Biblio
In this paper, parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using Message Passing Interface (MPI) based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the Input/Output (I/O) bottleneck are explored, and findings indicate that architecting a machine with a larger local disk and maintaining a local file system significantly improve the scaling results. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library.