Visible to the public Biblio

Filters: Keyword is ML techniques  [Clear All Filters]
2021-09-21
Dalal, Kushal Rashmikant.  2020.  Analysing the Role of Supervised and Unsupervised Machine Learning in IoT. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :75–79.
To harness the value of data generated from IoT, there is a crucial requirement of new mechanisms. Machine learning (ML) is among the most suitable paradigms of computation which embeds strong intelligence within IoT devices. Various ML techniques are being widely utilised for improving network security in IoT. These techniques include reinforcement learning, semi-supervised learning, supervised learning, and unsupervised learning. This report aims to critically analyse the role played by supervised and unsupervised ML for the enhancement of IoT security.
2020-08-07
Hasan, Kamrul, Shetty, Sachin, Ullah, Sharif.  2019.  Artificial Intelligence Empowered Cyber Threat Detection and Protection for Power Utilities. 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC). :354—359.
Cyber threats have increased extensively during the last decade, especially in smart grids. Cybercriminals have become more sophisticated. Current security controls are not enough to defend networks from the number of highly skilled cybercriminals. Cybercriminals have learned how to evade the most sophisticated tools, such as Intrusion Detection and Prevention Systems (IDPS), and Advanced Persistent Threat (APT) is almost invisible to current tools. Fortunately, the application of Artificial Intelligence (AI) may increase the detection rate of IDPS systems, and Machine Learning (ML) techniques can mine data to detect different attack stages of APT. However, the implementation of AI may bring other risks, and cybersecurity experts need to find a balance between risk and benefits.
2018-04-11
Ghanem, K., Aparicio-Navarro, F. J., Kyriakopoulos, K. G., Lambotharan, S., Chambers, J. A..  2017.  Support Vector Machine for Network Intrusion and Cyber-Attack Detection. 2017 Sensor Signal Processing for Defence Conference (SSPD). :1–5.

Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non- linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non- homogeneous features.