Visible to the public Biblio

Filters: Keyword is RF signals  [Clear All Filters]
2022-04-22
Xu, Chengtao, He, Fengyu, Chen, Bowen, Jiang, Yushan, Song, Houbing.  2021.  Adaptive RF Fingerprint Decomposition in Micro UAV Detection based on Machine Learning. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :7968—7972.
Radio frequency (RF) signal classification has significantly been used for detecting and identifying the features of unknown unmanned aerial vehicles (UAVs). This paper proposes a method using empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) on extracting the communication channel characteristics of intruding UAVs. The decomposed intrinsic mode functions (IMFs) except noise components are selected for RF signal pattern recognition based on machine learning (ML). The classification results show that the denoising effects introduced by EMD and EEMD could both fit in improving the detection accuracy with different features of RF communication channel, especially on identifying time-varying RF signal sources.
2022-04-19
McManus, Maxwell, Guan, Zhangyu, Bentley, Elizabeth Serena, Pudlewski, Scott.  2021.  Experimental Analysis of Cross-Layer Sensing for Protocol-Agnostic Packet Boundary Recognition. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Radio-frequency (RF) sensing is a key technology for designing intelligent and secure wireless networks with high spectral efficiency and environment-aware adaptation capabilities. However, existing sensing techniques can extract only limited information from RF signals or assume that the RF signals are generated by certain known protocols. As a result, their applications are limited if proprietary protocols or encryption methods are adopted, or in environments subject to errors such as unintended interference. To address this challenge, we study protocol-agnostic cross-layer sensing to extract high-layer protocol information from raw RF samples without any a priori knowledge of the protocols. First, we present a framework for protocol-agnostic sensing for over-the-air (OTA) RF signals, by taking packet boundary recognition (PBR) as an example. The framework consists of three major components: OTA Signal Generator, Agnostic RF Sink, and Ground Truth Generator. Then, we develop a software-defined testbed using USRP SDRs, with eleven benchmark statistical algorithms implemented in the Agnostic RF Sink, including Kullback-Leibler divergence and cross-power spectral density, among others. Finally, we test the effectiveness of these statistical algorithms in PBR on OTA RF samples, considering a wide variety of transmission parameters, including modulation type, transmission distance, and packet length. It is found that none of these benchmark statistical algorithms can achieve consistently high PBR rate, and new algorithms are required particularly in next-generation low-latency wireless systems.
2021-12-20
Sahay, Rajeev, Brinton, Christopher G., Love, David J..  2021.  Frequency-based Automated Modulation Classification in the Presence of Adversaries. ICC 2021 - IEEE International Conference on Communications. :1–6.
Automatic modulation classification (AMC) aims to improve the efficiency of crowded radio spectrums by automatically predicting the modulation constellation of wireless RF signals. Recent work has demonstrated the ability of deep learning to achieve robust AMC performance using raw in-phase and quadrature (IQ) time samples. Yet, deep learning models are highly susceptible to adversarial interference, which cause intelligent prediction models to misclassify received samples with high confidence. Furthermore, adversarial interference is often transferable, allowing an adversary to attack multiple deep learning models with a single perturbation crafted for a particular classification network. In this work, we present a novel receiver architecture consisting of deep learning models capable of withstanding transferable adversarial interference. Specifically, we show that adversarial attacks crafted to fool models trained on time-domain features are not easily transferable to models trained using frequency-domain features. In this capacity, we demonstrate classification performance improvements greater than 30% on recurrent neural networks (RNNs) and greater than 50% on convolutional neural networks (CNNs). We further demonstrate our frequency feature-based classification models to achieve accuracies greater than 99% in the absence of attacks.
2021-04-27
Ding, K., Meng, Z., Yu, Z., Ju, Z., Zhao, Z., Xu, K..  2020.  Photonic Compressive Sampling of Sparse Broadband RF Signals using a Multimode Fiber. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
We propose a photonic compressive sampling scheme based on multimode fiber for radio spectrum sensing, which shows high accuracy and stability, and low complexity and cost. Pulse overlapping is utilized for a fast detection. © 2020 The Author(s).
2018-04-11
Huang, Kaiyu, Qu, Y., Zhang, Z., Chakravarthy, V., Zhang, Lin, Wu, Z..  2017.  Software Defined Radio Based Mixed Signal Detection in Spectrally Congested and Spectrally Contested Environment. 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). :1–6.

In a spectrally congested environment or a spectrally contested environment which often occurs in cyber security applications, multiple signals are often mixed together with significant overlap in spectrum. This makes the signal detection and parameter estimation task very challenging. In our previous work, we have demonstrated the feasibility of using a second order spectrum correlation function (SCF) cyclostationary feature to perform mixed signal detection and parameter estimation. In this paper, we present our recent work on software defined radio (SDR) based implementation and demonstration of such mixed signal detection algorithms. Specifically, we have developed a software defined radio based mixed RF signal generator to generate mixed RF signals in real time. A graphical user interface (GUI) has been developed to allow users to conveniently adjust the number of mixed RF signal components, the amplitude, initial time delay, initial phase offset, carrier frequency, symbol rate, modulation type, and pulse shaping filter of each RF signal component. This SDR based mixed RF signal generator is used to transmit desirable mixed RF signals to test the effectiveness of our developed algorithms. Next, we have developed a software defined radio based mixed RF signal detector to perform the mixed RF signal detection. Similarly, a GUI has been developed to allow users to easily adjust the center frequency and bandwidth of band of interest, perform time domain analysis, frequency domain analysis, and cyclostationary domain analysis.