Visible to the public Biblio

Filters: Author is Zhao, Z.  [Clear All Filters]
2021-04-27
Ding, K., Meng, Z., Yu, Z., Ju, Z., Zhao, Z., Xu, K..  2020.  Photonic Compressive Sampling of Sparse Broadband RF Signals using a Multimode Fiber. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
We propose a photonic compressive sampling scheme based on multimode fiber for radio spectrum sensing, which shows high accuracy and stability, and low complexity and cost. Pulse overlapping is utilized for a fast detection. © 2020 The Author(s).
2021-01-11
YE, X., JI, B., Chen, X., QIAN, D., Zhao, Z..  2020.  Probability Boltzmann Machine Network for Face Detection on Video. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :138—147.

By the multi-layer nonlinear mapping and the semantic feature extraction of the deep learning, a deep learning network is proposed for video face detection to overcome the challenge of detecting faces rapidly and accurately in video with changeable background. Particularly, a pre-training procedure is used to initialize the network parameters to avoid falling into the local optimum, and the greedy layer-wise learning is introduced in the pre-training to avoid the training error transfer in layers. Key to the network is that the probability of neurons models the status of human brain neurons which is a continuous distribution from the most active to the least active and the hidden layer’s neuron number decreases layer-by-layer to reduce the redundant information of the input data. Moreover, the skin color detection is used to accelerate the detection speed by generating candidate regions. Experimental results show that, besides the faster detection speed and robustness against face rotation, the proposed method possesses lower false detection rate and lower missing detection rate than traditional algorithms.

2019-02-14
Zhao, Z., Lu, W., Ma, J., Li, S., Zhou, L..  2018.  Fast Unloading Transient Recovery of Buck Converters Using Series-Inductor Auxiliary Circuit Based Sequence Switching Control. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). :1-5.

This paper presents a sequence switching control (SSC) scheme for buck converters with a series-inductor auxiliary circuit, aiming at improving the load transient response. During an unloading transient, the series inductor is controlled as a small equivalent inductance so as to achieve a fast transient regulation. While in the steady state, the series inductor behaves as a large inductance to reduce the output current ripple. Furthermore, on the basis of the proposed variable inductance circuit, a SSC control scheme is proposed and implemented in a digital form. With the proposed control scheme the unloading transient event is divided into n+1 sub-periods, and in each sub-period, the capacitor-charge balance principle is used to determine the switching time sequence. Furthermore, its feasibility is validated in experiment with a 12V-3.3V low-voltage high-current synchronous buck converter. Experimental results demonstrate that the voltage overshoot of the proposed SSC scheme has improved more than 74% compared to that of the time-optimal control (TOC) scheme.

2018-05-30
An, S., Zhao, Z., Zhou, H..  2017.  Research on an Agent-Based Intelligent Social Tagging Recommendation System. 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). 1:43–46.

With the repaid growth of social tagging users, it becomes very important for social tagging systems how the required resources are recommended to users rapidly and accurately. Firstly, the architecture of an agent-based intelligent social tagging system is constructed using agent technology. Secondly, the design and implementation of user interest mining, personalized recommendation and common preference group recommendation are presented. Finally, a self-adaptive recommendation strategy for social tagging and its implementation are proposed based on the analysis to the shortcoming of the personalized recommendation strategy and the common preference group recommendation strategy. The self-adaptive recommendation strategy achieves equilibrium selection between efficiency and accuracy, so that it solves the contradiction between efficiency and accuracy in the personalized recommendation model and the common preference recommendation model.

2017-12-20
Meng, X., Zhao, Z., Li, R., Zhang, H..  2017.  An intelligent honeynet architecture based on software defined security. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
Honeynet is deployed to trap attackers and learn their behavior patterns and motivations. Conventional honeynet is implemented by dedicated hardware and software. It suffers from inflexibility, high CAPEX and OPEX. There have been several virtualized honeynet architectures to solve those problems. But they lack a standard operating environment and common architecture for dynamic scheduling and adaptive resource allocation. Software Defined Security (SDS) framework has a centralized control mechanism and intelligent decision making ability for different security functions. In this paper, we present a new intelligent honeynet architecture based on SDS framework. It implements security functions over Network Function Virtualization Infrastructure (NFVI). Under uniform and intelligent control, security functional modules can be dynamically deployed and collaborated to complete different tasks. It migrates resources according to the workloads of each honeypot and power off unused modules. Simulation results show that intelligent honeynet has a better performance in conserving resources and reducing energy consumption. The new architecture can fit the needs of future honeynet development and deployment.
2017-11-03
Liao, K., Zhao, Z., Doupe, A., Ahn, G. J..  2016.  Behind closed doors: measurement and analysis of CryptoLocker ransoms in Bitcoin. 2016 APWG Symposium on Electronic Crime Research (eCrime). :1–13.

Bitcoin, a decentralized cryptographic currency that has experienced proliferating popularity over the past few years, is the common denominator in a wide variety of cybercrime. We perform a measurement analysis of CryptoLocker, a family of ransomware that encrypts a victim's files until a ransom is paid, within the Bitcoin ecosystem from September 5, 2013 through January 31, 2014. Using information collected from online fora, such as reddit and BitcoinTalk, as an initial starting point, we generate a cluster of 968 Bitcoin addresses belonging to CryptoLocker. We provide a lower bound for CryptoLocker's economy in Bitcoin and identify 795 ransom payments totalling 1,128.40 BTC (\$310,472.38), but show that the proceeds could have been worth upwards of \$1.1 million at peak valuation. By analyzing ransom payment timestamps both longitudinally across CryptoLocker's operating period and transversely across times of day, we detect changes in distributions and form conjectures on CryptoLocker that corroborate information from previous efforts. Additionally, we construct a network topology to detail CryptoLocker's financial infrastructure and obtain auxiliary information on the CryptoLocker operation. Most notably, we find evidence that suggests connections to popular Bitcoin services, such as Bitcoin Fog and BTC-e, and subtle links to other cybercrimes surrounding Bitcoin, such as the Sheep Marketplace scam of 2013. We use our study to underscore the value of measurement analyses and threat intelligence in understanding the erratic cybercrime landscape.