Visible to the public Biblio

Filters: Keyword is sequential circuits  [Clear All Filters]
2022-02-22
Duvalsaint, Danielle, Blanton, R. D. Shawn.  2021.  Characterizing Corruptibility of Logic Locks using ATPG. 2021 IEEE International Test Conference (ITC). :213–222.

The outsourcing of portions of the integrated circuit design chain, mainly fabrication, to untrusted parties has led to an increasing concern regarding the security of fabricated ICs. To mitigate these concerns a number of approaches have been developed, including logic locking. The development of different logic locking methods has influenced research looking at different security evaluations, typically aimed at uncovering a secret key. In this paper, we make the case that corruptibility for incorrect keys is an important metric of logic locking. To measure corruptibility for circuits too large to exhaustively simulate, we describe an ATPG-based method to measure the corruptibility of incorrect keys. Results from applying the method to various circuits demonstrate that this method is effective at measuring the corruptibility for different locks.

2020-08-24
Gohil, Nikhil N., Vemuri, Ranga R..  2019.  Automated Synthesis of Differential Power Attack Resistant Integrated Circuits. 2019 IEEE National Aerospace and Electronics Conference (NAECON). :204–211.
Differential Power Analysis (DPA) attacks were shown to be effective in recovering the secret key information from a variety cryptographic systems. In response, several design methods, ranging from the cell level to the algorithmic level, have been proposed to defend against DPA attacks. Cell level solutions depend on DPA resistant cell designs which attempt to minimize power variance during transitions while minimizing area and power consumption. In this paper, we discuss how a differential circuit design style is incorporated into a COTS tool set, resulting in a fully automated synthesis system DPA resistant integrated circuits. Based on the Secure Differential Multiplexer Logic (SDMLp), this system can be used to synthesize complete cryptographic processors which provide strong defense against DPA while minimizing area and power overhead. We discuss how both combinational and sequential cells are incorporated in the cell library. We show the effectiveness of the tool chain by using it to automatically synthesize the layouts, from RT level Verilog specifications, of both the DES and AES encryption ICs in 90nm CMOS. In each case, we present experimental data to demonstrate DPA attack resistance and area, power and performance overhead and compare these with circuits synthesized in another differential logic called MDPL as well as standard CMOS synthesis results.
2018-04-11
Matrosova, A., Mitrofanov, E., Ostanin, S., Nikolaeva, E..  2017.  Detection and Masking of Trojan Circuits in Sequential Logic. 2017 IEEE East-West Design Test Symposium (EWDTS). :1–4.

A technique of finding a set of sequential circuit nodes in which Trojan Circuits (TC) may be implanted is suggested. The technique is based on applying the precise (not heuristic) random estimations of internal node observability and controllability. Getting the estimations we at the same time derive and compactly represent all sequential circuit full states (depending on input and state variables) in which of that TC may be switched on. It means we obtain precise description of TC switch on area for the corresponding internal node v. The estimations are computed with applying a State Transition Graph (STG) description, if we suppose that TC may be inserted out of the working area (out of the specification) of the sequential circuit. Reduced Ordered Binary Decision Diagrams (ROBDDs) for the combinational part and its fragments are applied for getting the estimations by means of operations on ROBDDs. Techniques of masking TCs are proposed. Masking sub-circuits overhead is appreciated.