Biblio
Filters: Keyword is Image detection [Clear All Filters]
Research on the Implementation of Real-Time Intelligent Detection for Illegal Messages Based on Artificial Intelligence Technology. 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS). :278—284.
.
2022. In recent years, the detection of illegal and harmful messages which plays an significant role in Internet service is highly valued by the government and society. Although artificial intelligence technology is increasingly applied to actual operating systems, it is still a big challenge to be applied to systems that require high real-time performance. This paper provides a real-time detection system solution based on artificial intelligence technology. We first introduce the background of real-time detection of illegal and harmful messages. Second, we propose a complete set of intelligent detection system schemes for real-time detection, and conduct technical exploration and innovation in the media classification process including detection model optimization, traffic monitoring and automatic configuration algorithm. Finally, we carry out corresponding performance verification.
Locality-Sensitive Hashing Scheme Based on Heap Sort of Hash Bucket. 2019 14th International Conference on Computer Science Education (ICCSE). :5–10.
.
2019. Nearest neighbor search (NNS) is one of the current popular research directions, which widely used in machine learning, pattern recognition, image detection and so on. In the low dimension data, based on tree search method can get good results. But when the data dimension goes up, that will produce a curse of dimensional. The proposed Locality-Sensitive Hashing algorithm (LSH) greatly improves the efficiency of nearest neighbor query for high dimensional data. But the algorithm relies on the building a large number of hash table, which makes the space complexity very high. C2LSH based on dynamic collision improves the disadvantage of LSH, but its disadvantage is that it needs to detect the collision times of a large number of data points which Increased query time. Therefore, Based on LSH algorithm, later researchers put forward many improved algorithms, but still not ideal.In this paper, we put forward Locality-Sensitive Hashing Scheme Based on Heap Sort of Hash Bucket (HSLSH) algorithm aiming at the shortcomings of LSH and C2LSH. Its main idea is to take advantage of the efficiency of heapsort in massive data sorting to improve the efficiency of nearest neighbor query. It only needs to rely on a small number of hash functions can not only overcome the shortcoming of LSH need to build a large number of hash table, and avoids defects of C2LSH. Experiments show that our algorithm is more than 20% better than C2LSH in query accuracy and 40% percent lower in query time.
Compressive Sensing Based Feature Residual for Image Steganalysis Detection. 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1096–1100.
.
2017. Based on the feature analysis of image content, this paper proposes a novel steganalytic method for grayscale images in spatial domain. In this work, we firstly investigates directional lifting wavelet transform (DLWT) as a sparse representation in compressive sensing (CS) domain. Then a block CS (BCS) measurement matrix is designed by using the generalized Gaussian distribution (GGD) model, in which the measurement matrix can be used to sense the DLWT coefficients of images to reflect the feature residual introduced by steganography. Extensive experiments are showed that proposed scheme CS-based is feasible and universal for detecting stegography in spatial domain.