Biblio
The rapidly growing body of research in adversarial machine learning has demonstrated that deep neural networks (DNNs) are highly vulnerable to adversarially generated images. This underscores the urgent need for practical defense techniques that can be readily deployed to combat attacks in real-time. Observing that many attack strategies aim to perturb image pixels in ways that are visually imperceptible, we place JPEG compression at the core of our proposed SHIELD defense framework, utilizing its capability to effectively "compress away" such pixel manipulation. To immunize a DNN model from artifacts introduced by compression, SHIELD "vaccinates" the model by retraining it with compressed images, where different compression levels are applied to generate multiple vaccinated models that are ultimately used together in an ensemble defense. On top of that, SHIELD adds an additional layer of protection by employing randomization at test time that compresses different regions of an image using random compression levels, making it harder for an adversary to estimate the transformation performed. This novel combination of vaccination, ensembling, and randomization makes SHIELD a fortified multi-pronged defense. We conducted extensive, large-scale experiments using the ImageNet dataset, and show that our approaches eliminate up to 98% of gray-box attacks delivered by strong adversarial techniques such as Carlini-Wagner's L2 attack and DeepFool. Our approaches are fast and work without requiring knowledge about the model.
Deep learning model has been widely studied and proven to achieve high accuracy in various pattern recognition tasks, especially in image recognition. However, due to its non-linear architecture and high-dimensional inputs, its ill-posedness [1] towards adversarial perturbations-small deliberately crafted perturbations on the input will lead to completely different outputs, has also attracted researchers' attention. This work takes the traffic sign recognition system on the self-driving car as an example, and aims at designing an additional mechanism to improve the robustness of the recognition system. It uses a machine learning model which learns the results of the deep learning model's predictions, with human feedback as labels and provides the credibility of current prediction. The mechanism makes use of both the input image and the recognition result as sample space, querying a human user the True/False of current classification result the least number of times, and completing the task of detecting adversarial attacks.