Visible to the public Biblio

Filters: Keyword is Dynamic Time Warping  [Clear All Filters]
2021-08-17
Shen, Xingfa, Yan, Guo, Yang, Jian, Xu, Sheng.  2020.  WiPass: CSI-based Keystroke Recognition for Numerical Keypad of Smartphones. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :276—283.
Nowadays, smartphones are everywhere. They play an indispensable role in our lives and makes people convenient to communicate, pay, socialize, etc. However, they also bring a lot of security and privacy risks. Keystroke operations of numeric keypad are often required when users input password to perform mobile payment or input other privacy-sensitive information. Different keystrokes may cause different finger movements that will bring different interference to WiFi signal, which may be reflected by channel state information (CSI). In this paper, we propose WiPass, a password-keystroke recognition system for numerical keypad input on smartphones, which especially occurs frequently in mobile payment APPs. Based on only a public WiFi hotspot deployed in the victim payment scenario, WiPass would extracts and analyzes the CSI data generated by the password-keystroke operation of the smartphone user, and infers the user's payment password by comparing the CSI waveforms of different keystrokes. We implemented the WiPass system by using COTS WiFi AP devices and smartphones. The average keystroke segmentation accuracy was 80.45%, and the average keystroke recognition accuracy was 74.24%.
2021-02-22
Chen, T., Lin, T., Hong, Y.- P..  2020.  Gait Phase Segmentation Using Weighted Dynamic Time Warping and K-Nearest Neighbors Graph Embedding. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1180–1184.
Gait phase segmentation is the process of identifying the start and end of different phases within a gait cycle. It is essential to many medical applications, such as disease diagnosis or rehabilitation. This work utilizes inertial measurement units (IMUs) mounted on the individual's foot to gather gait information and develops a gait phase segmentation method based on the collected signals. The proposed method utilizes a weighted dynamic time warping (DTW) algorithm to measure the distance between two different gait signals, and a k-nearest neighbors (kNN) algorithm to obtain the gait phase estimates. To reduce the complexity of the DTW-based kNN search, we propose a neural network-based graph embedding scheme that is able to map the IMU signals associated with each gait cycle into a distance-preserving low-dimensional representation while also producing a prediction on the k nearest neighbors of the test signal. Experiments are conducted on self-collected IMU gait signals to demonstrate the effectiveness of the proposed scheme.
2018-05-02
Yao, Y., Xiao, B., Wu, G., Liu, X., Yu, Z., Zhang, K., Zhou, X..  2017.  Voiceprint: A Novel Sybil Attack Detection Method Based on RSSI for VANETs. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :591–602.

Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.