Visible to the public Biblio

Filters: Keyword is network simulator  [Clear All Filters]
2020-06-01
Kaushik, Ila, Sharma, Nikhil, Singh, Nanhay.  2019.  Intrusion Detection and Security System for Blackhole Attack. 2019 2nd International Conference on Signal Processing and Communication (ICSPC). :320—324.

Communication is considered as an essential part of our lives. Different medium was used for exchange of information, but due to advancement in field of technology, different network setup came into existence. One of the most suited in wireless field is Wireless Sensor Network (WSN). These networks are set up by self-organizing nodes which operate over radio environment. Since communication is done more rapidly, they are confined to many attacks which operate at different layers. In order to have efficient communication, some security measure must be introduced in the network ho have secure communication. In this paper, we describe various attacks functioning at different layers also one of the common network layer attack called Blackhole Attack with its mitigation technique using Intrusion Detection System (IDS) over network simulator ns2 has been discussed.

2020-05-26
Tiennoy, Sasirom, Saivichit, Chaiyachet.  2018.  Using a Distributed Roadside Unit for the Data Dissemination Protocol in VANET With the Named Data Architecture. IEEE Access. 6:32612–32623.
Vehicular ad hoc network (VANET) has recently become one of the highly active research areas for wireless networking. Since VANET is a multi-hop wireless network with very high mobility and intermittent connection lifetime, it is important to effectively handle the data dissemination issue in this rapidly changing environment. However, the existing TCP/IP implementation may not fit into such a highly dynamic environment because the nodes in the network must often perform rerouting due to their inconsistency of connectivity. In addition, the drivers in the vehicles may want to acquire some data, but they do not know the address/location of such data storage. Hence, the named data networking (NDN) approach may be more desirable here. The NDN architecture is proposed for the future Internet, which focuses on the delivering mechanism based on the message contents instead of relying on the host addresses of the data. In this paper, a new protocol named roadside unit (RSU) assisted of named data network (RA-NDN) is presented. The RSU can operate as a standalone node [standalone RSU (SA-RSU)]. One benefit of deploying SA-RSUs is the improved network connectivity. This study uses the NS3 and SUMO software packages for the network simulator and traffic simulator software, respectively, to verify the performance of the RA-NDN protocol. To reduce the latency under various vehicular densities, vehicular transmission ranges, and number of requesters, the proposed approach is compared with vehicular NDN via a real-world data set in the urban area of Sathorn road in Bangkok, Thailand. The simulation results show that the RA-NDN protocol improves the performance of ad hoc communications with the increase in data received ratio and throughput and the decrease in total dissemination time and traffic load.
2018-05-24
Agustin, J. P. C., Jacinto, J. H., Limjoco, W. J. R., Pedrasa, J. R. I..  2017.  IPv6 Routing Protocol for Low-Power and Lossy Networks Implementation in Network Simulator \#x2014; 3. TENCON 2017 - 2017 IEEE Region 10 Conference. :3129–3134.

Wireless Sensor Networks (WSN) are widely used to monitor and control physical environments. An efficient energy management system is needed to be able to deploy these networks in lossy environments while maintaining reliable communication. The IPv6 Routing Protocol for Low-Power and Lossy networks is a routing protocol designed to properly manage energy without compromising reliability. This protocol has currently been implemented in Contiki OS, TinyOS, and OMNeT++ Castalia. But these applications also simulate all operation mechanics of a specified hardware model instead of just simulating the protocol only, thus adding unnecessary overhead and slowing down simulations on RPL. In light of this, we have implemented a working ns-3 implementation of RPL with support for multiple RPL instances with the use of a global repair mechanism. The behavior and output of our simulator was compared to Cooja for verification, and the results are similar with a minor difference in rank computation.

2018-05-09
Geetanjali, Gupta, J..  2017.  Improved approach of co-operative gray hole attack prevention monitored by meta heuristic on MANET. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :356–361.

Mobile ad-hoc network (MANET) contains various wireless movable nodes which can communicate with each other and they don't require any centralized administrator or network infrastructure and also can communicate with full capacity because it is composed of mobile nodes. They transmit data to each other with the help of intermediate nodes by establishing a path. But sometime malicious node can easily enter in network due to the mobility of nodes. That malicious node can harm the network by dropping the data packets. These type of attack is called gray hole attack. For detection and prevention from this type of attack a mechanism is proposed in this paper. By using network simulator, the simulation will be carried out for reporting the difficulties of prevention and detection of multiple gray hole attack in the Mobile ad-hoc network (MANET). Particle Swarm Optimization is used in this paper. Because of ad-hoc nature it observers the changing values of the node, if the value is infinite then node has been attacked and it prevents other nodes from sending data to that node. In this paper, we present possible solutions to prevent the network. Firstly, find more than one route to transmit packets to destination. Second, we provide minimum time delay to deliver the packet. The simulation shows the higher throughput, less time delay and less packet drop.