Visible to the public Biblio

Filters: Keyword is system failure  [Clear All Filters]
2021-02-01
Lee, J., Abe, G., Sato, K., Itoh, M..  2020.  Impacts of System Transparency and System Failure on Driver Trust During Partially Automated Driving. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1–3.
The objective of this study is to explore changes of trust by a situation where drivers need to intervene. Trust in automation is a key determinant for appropriate interaction between drivers and the system. System transparency and types of system failure influence shaping trust in a supervisory control. Subjective ratings of trust were collected to examine the impact of two factors: system transparency (Detailed vs. Less) and system failure (by Limits vs. Malfunction) in a driving simulator study in which drivers experienced a partially automated vehicle. We examined trust ratings at three points: before and after driver intervention in the automated vehicle, and after subsequent experience of flawless automated driving. Our result found that system transparency did not have significant impacts on trust change from before to after the intervention. System-malfunction led trust reduction compared to those of before the intervention, whilst system-limits did not influence trust. The subsequent experience recovered decreased trust, in addition, when the system-limit occurred to drivers who have detailed information about the system, trust prompted in spite of the intervention. The present finding has implications for automation design to achieve the appropriate level of trust.
2019-02-25
Kuyumani, M., Joseph, M. K., Hassan, S..  2018.  Communication Technologies for Efficient Energy Management in Smart Grid. 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1-8.

The existing radial topology makes the power system less reliable since any part in the system failure will disrupt electrical power delivery in the network. The increasing security concerns, electrical energy theft, and present advancement in Information and Communication Technologies are some factors that led to modernization of power system. In a smart grid, a network of smart sensors offers numerous opportunities that may include monitoring of power, consumer-side energy management, synchronization of dispersed power storage, and integrating sources of renewable energy. Smart sensor networks are low cost and are ease to deploy hence they are favorable contestants for deployment smart power grids at a larger scale. These networks will result in a colossal volume of dissimilar range of data that require an efficient processing and analyzing process in order to realize an efficient smart grid. The existing technology can be used to collect data but dealing with the collected information proficiently as well as mining valuable material out of it remains challenging. The paper investigates communication technologies that maybe deployed in a smart grid. In this paper simulations results for the Additive White Gaussian Noise (AWGN) channel are illustrated. We propose a model and a communication network domain riding on the power system domain. The model was interrogated by simulation in MATLAB.

2018-05-09
Hasan, S., Ghafouri, A., Dubey, A., Karsai, G., Koutsoukos, X..  2017.  Heuristics-based approach for identifying critical N \#x2014; k contingencies in power systems. 2017 Resilience Week (RWS). :191–197.

Reliable operation of electrical power systems in the presence of multiple critical N - k contingencies is an important challenge for the system operators. Identifying all the possible N - k critical contingencies to design effective mitigation strategies is computationally infeasible due to the combinatorial explosion of the search space. This paper describes two heuristic algorithms based on the iterative pruning of the candidate contingency set to effectively and efficiently identify all the critical N - k contingencies resulting in system failure. These algorithms are applied to the standard IEEE-14 bus system, IEEE-39 bus system, and IEEE-57 bus system to identify multiple critical N - k contingencies. The algorithms are able to capture all the possible critical N - k contingencies (where 1 ≤ k ≤ 9) without missing any dangerous contingency.