Biblio
In parallel with the increasing growth of the Internet and computer networks, the number of malwares has been increasing every day. Today, one of the newest attacks and the biggest threats in cybersecurity is ransomware. The effectiveness of applying machine learning techniques for malware detection has been explored in much scientific research, however, there is few studies focused on machine learning-based ransomware detection. In this paper, the effectiveness of ransomware detection using machine learning methods applied to CICAndMal2017 dataset is examined in two experiments. First, the classifiers are trained on a single dataset containing different types of ransomware. Second, different classifiers are trained on datasets of 10 ransomware families distinctly. Our findings imply that in both experiments random forest outperforms other tested classifiers and the performance of the classifiers are not changed significantly when they are trained on each family distinctly. Therefore, the random forest classification method is very effective in ransomware detection.
Ransomware is one of the most increasing malwares used by cyber-criminals in recent days. This type of malware uses cryptographic technology that encrypts a user's important files, folders makes the computer systems unusable, holds the decryption key and asks for the ransom from the victims for recovery. The recent ransomware families are very sophisticated and difficult to analyze & detect using static features only. On the other hand, latest crypto-ransomwares having sandboxing and IDS evading capabilities. So obviously, static or dynamic analysis of the ransomware alone cannot provide better solution. In this paper, we will present a Machine Learning based approach which will use integrated method, a combination of static and dynamic analysis to detect ransomware. The experimental test samples were taken from almost all ransomware families including the most recent ``WannaCry''. The results also suggest that combined analysis can detect ransomware with better accuracy compared to individual analysis approach. Since ransomware samples show some ``run-time'' and ``static code'' features, it also helps for the early detection of new and similar ransomware variants.