Visible to the public Biblio

Filters: Keyword is ransomware families  [Clear All Filters]
2022-07-14
Almousa, May, Osawere, Janet, Anwar, Mohd.  2021.  Identification of Ransomware families by Analyzing Network Traffic Using Machine Learning Techniques. 2021 Third International Conference on Transdisciplinary AI (TransAI). :19–24.
The number of prominent ransomware attacks has increased recently. In this research, we detect ransomware by analyzing network traffic by using machine learning algorithms and comparing their detection performances. We have developed multi-class classification models to detect families of ransomware by using the selected network traffic features, which focus on the Transmission Control Protocol (TCP). Our experiment showed that decision trees performed best for classifying ransomware families with 99.83% accuracy, which is slightly better than the random forest algorithm with 99.61% accuracy. The experimental result without feature selection classified six ransomware families with high accuracy. On the other hand, classifiers with feature selection gave nearly the same result as those without feature selection. However, using feature selection gives the advantage of lower memory usage and reduced processing time, thereby increasing speed. We discovered the following ten important features for detecting ransomware: time delta, frame length, IP length, IP destination, IP source, TCP length, TCP sequence, TCP next sequence, TCP header length, and TCP initial round trip.
Almousa, May, Basavaraju, Sai, Anwar, Mohd.  2021.  API-Based Ransomware Detection Using Machine Learning-Based Threat Detection Models. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–7.
Ransomware is a major malware attack experienced by large corporations and healthcare services. Ransomware employs the idea of cryptovirology, which uses cryptography to design malware. The goal of ransomware is to extort ransom by threatening the victim with the destruction of their data. Ransomware typically involves a 3-step process: analyzing the victim’s network traffic, identifying a vulnerability, and then exploiting it. Thus, the detection of ransomware has become an important undertaking that involves various sophisticated solutions for improving security. To further enhance ransomware detection capabilities, this paper focuses on an Application Programming Interface (API)-based ransomware detection approach in combination with machine learning (ML) techniques. The focus of this research is (i) understanding the life cycle of ransomware on the Windows platform, (ii) dynamic analysis of ransomware samples to extract various features of malicious code patterns, and (iii) developing and validating machine learning-based ransomware detection models on different ransomware and benign samples. Data were collected from publicly available repositories and subjected to sandbox analysis for sampling. The sampled datasets were applied to build machine learning models. The grid search hyperparameter optimization algorithm was employed to obtain the best fit model; the results were cross-validated with the testing datasets. This analysis yielded a high ransomware detection accuracy of 99.18% for Windows-based platforms and shows the potential for achieving high-accuracy ransomware detection capabilities when using a combination of API calls and an ML model. This approach can be further utilized with existing multilayer security solutions to protect critical data from ransomware attacks.
2021-04-08
Ayub, M. A., Continella, A., Siraj, A..  2020.  An I/O Request Packet (IRP) Driven Effective Ransomware Detection Scheme using Artificial Neural Network. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :319–324.
In recent times, there has been a global surge of ransomware attacks targeted at industries of various types and sizes from retail to critical infrastructure. Ransomware researchers are constantly coming across new kinds of ransomware samples every day and discovering novel ransomware families out in the wild. To mitigate this ever-growing menace, academia and industry-based security researchers have been utilizing unique ways to defend against this type of cyber-attacks. I/O Request Packet (IRP), a low-level file system I/O log, is a newly found research paradigm for defense against ransomware that is being explored frequently. As such in this study, to learn granular level, actionable insights of ransomware behavior, we analyze the IRP logs of 272 ransomware samples belonging to 18 different ransomware families captured during individual execution. We further our analysis by building an effective Artificial Neural Network (ANN) structure for successful ransomware detection by learning the underlying patterns of the IRP logs. We evaluate the ANN model with three different experimental settings to prove the effectiveness of our approach. The model demonstrates outstanding performance in terms of accuracy, precision score, recall score, and F1 score, i.e., in the range of 99.7%±0.2%.
2020-03-23
Noorbehbahani, Fakhroddin, Rasouli, Farzaneh, Saberi, Mohammad.  2019.  Analysis of Machine Learning Techniques for Ransomware Detection. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :128–133.

In parallel with the increasing growth of the Internet and computer networks, the number of malwares has been increasing every day. Today, one of the newest attacks and the biggest threats in cybersecurity is ransomware. The effectiveness of applying machine learning techniques for malware detection has been explored in much scientific research, however, there is few studies focused on machine learning-based ransomware detection. In this paper, the effectiveness of ransomware detection using machine learning methods applied to CICAndMal2017 dataset is examined in two experiments. First, the classifiers are trained on a single dataset containing different types of ransomware. Second, different classifiers are trained on datasets of 10 ransomware families distinctly. Our findings imply that in both experiments random forest outperforms other tested classifiers and the performance of the classifiers are not changed significantly when they are trained on each family distinctly. Therefore, the random forest classification method is very effective in ransomware detection.

2018-05-09
Hasan, M. M., Rahman, M. M..  2017.  RansHunt: A Support Vector Machines Based Ransomware Analysis Framework with Integrated Feature Set. 2017 20th International Conference of Computer and Information Technology (ICCIT). :1–7.

Ransomware is one of the most increasing malwares used by cyber-criminals in recent days. This type of malware uses cryptographic technology that encrypts a user's important files, folders makes the computer systems unusable, holds the decryption key and asks for the ransom from the victims for recovery. The recent ransomware families are very sophisticated and difficult to analyze & detect using static features only. On the other hand, latest crypto-ransomwares having sandboxing and IDS evading capabilities. So obviously, static or dynamic analysis of the ransomware alone cannot provide better solution. In this paper, we will present a Machine Learning based approach which will use integrated method, a combination of static and dynamic analysis to detect ransomware. The experimental test samples were taken from almost all ransomware families including the most recent ``WannaCry''. The results also suggest that combined analysis can detect ransomware with better accuracy compared to individual analysis approach. Since ransomware samples show some ``run-time'' and ``static code'' features, it also helps for the early detection of new and similar ransomware variants.