Visible to the public Biblio

Filters: Keyword is GPUs  [Clear All Filters]
2020-12-01
Karatas, G., Demir, O., Sahingoz, O. K..  2019.  A Deep Learning Based Intrusion Detection System on GPUs. 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1—6.

In recent years, almost all the real-world operations are transferred to cyber world and these market computers connect with each other via Internet. As a result of this, there is an increasing number of security breaches of the networks, whose admins cannot protect their networks from the all types of attacks. Although most of these attacks can be prevented with the use of firewalls, encryption mechanisms, access controls and some password protections mechanisms; due to the emergence of new type of attacks, a dynamic intrusion detection mechanism is always needed in the information security market. To enable the dynamicity of the Intrusion Detection System (IDS), it should be updated by using a modern learning mechanism. Neural Network approach is one of the mostly preferred algorithms for training the system. However, with the increasing power of parallel computing and use of big data for training, as a new concept, deep learning has been used in many of the modern real-world problems. Therefore, in this paper, we have proposed an IDS system which uses GPU powered Deep Learning Algorithms. The experimental results are collected on mostly preferred dataset KDD99 and it showed that use of GPU speed up training time up to 6.48 times depending on the number of the hidden layers and nodes in them. Additionally, we compare the different optimizers to enlighten the researcher to select the best one for their ongoing or future research.

2020-08-07
Guri, Mordechai.  2019.  HOTSPOT: Crossing the Air-Gap Between Isolated PCs and Nearby Smartphones Using Temperature. 2019 European Intelligence and Security Informatics Conference (EISIC). :94—100.
Air-gapped computers are hermetically isolated from the Internet to eliminate any means of information leakage. In this paper we present HOTSPOT - a new type of airgap crossing technique. Signals can be sent secretly from air-gapped computers to nearby smartphones and then on to the Internet - in the form of thermal pings. The thermal signals are generated by the CPUs and GPUs and intercepted by a nearby smartphone. We examine this covert channel and discuss other work in the field of air-gap covert communication channels. We present technical background and describe thermal sensing in modern smartphones. We implement a transmitter on the computer side and a receiver Android App on the smartphone side, and discuss the implementation details. We evaluate the covert channel and tested it in a typical work place. Our results show that it possible to send covert signals from air-gapped PCs to the attacker on the Internet through the thermal pings. We also propose countermeasures for this type of covert channel which has thus far been overlooked.
2018-05-09
Yaneva, Vanya, Rajan, Ajitha, Dubach, Christophe.  2017.  Compiler-Assisted Test Acceleration on GPUs for Embedded Software. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. :35–45.

Embedded software is found everywhere from our highly visible mobile devices to the confines of our car in the form of smart sensors. Embedded software companies are under huge pressure to produce safe applications that limit risks, and testing is absolutely critical to alleviate concerns regarding safety and user privacy. This requires using large test suites throughout the development process, increasing time-to-market and ultimately hindering competitivity. Speeding up test execution is, therefore, of paramount importance for embedded software developers. This is traditionally achieved by running, in parallel, multiple tests on large-scale clusters of computers. However, this approach is costly in terms of infrastructure maintenance and energy consumed, and is at times inconvenient as developers have to wait for their tests to be scheduled on a shared resource. We propose to look at exploiting GPUs (Graphics Processing Units) for running embedded software testing. GPUs are readily available in most computers and offer tremendous amounts of parallelism, making them an ideal target for embedded software testing. In this paper, we demonstrate, for the first time, how test executions of embedded C programs can be automatically performed on a GPU, without involving the end user. We take a compiler-assisted approach which automatically compiles the C program into GPU kernels for parallel execution of the input tests. Using this technique, we achieve an average speedup of 16× when compared to CPU execution of input tests across nine programs from an industry standard embedded benchmark suite.