Biblio
The RFID technology is now widely used and combined with everyday life. RFID Tag is a wireless device used to identify individuals and objects, in fact, it is a combination of the chip and antenna that sends the necessary information to an RFID Reader. On the other hand, an RFID Reader converts received radio waves into digital information and then provides facilities such as sending data to the computer and processing them. Radio frequency identification is a comprehensive processing technology that has led to a revolution in industry and medicine as an alternative to commercial barcodes. RFID Tag is used to tracking commodities and personal assets in the chain stores and even the human body and medical science. However, security and privacy problems have not yet been solved satisfactorily. There are many technical and economic challenges in this direction. In this paper, some of the latest technical research on privacy and security problems has been investigated in radio-frequency identification and security bit method, and it has been shown that in order to achieve this level of individual security, multiple technologies of RFID security development should combine with each other. These solutions should be cheap, efficient, reliable, flexible and long-term.
Radio-Frequency Identification (RFID) tags have been widely used as a low-cost wireless method for detection of counterfeit product injection in supply chains. In order to adequately perform authentication, current RFID monitoring schemes need to either have a persistent online connection between supply chain partners and the back-end database or have a local database on each partner site. A persistent online connection is not guaranteed and local databases on each partner site impose extra cost and security issues. We solve this problem by introducing a new scheme in which a small Non-Volatile Memory (NVM) embedded in RFID tag is used to function as a tiny “encoded local database”. In addition our scheme resists “tag tracing” so that each partner's operation remains private. Our scheme can be implemented in less than 1200 gates satisfying current RFID technology requirements.
The vulnerabilities in today's supply chain have raised serious concerns about the security and trustworthiness of electronic components and systems. Testing for device provenance, detection of counterfeit integrated circuits/systems, and traceability are challenging issues to address. In this paper, we develop a novel RFID-based system suitable for electronic component and system Counterfeit detection and System Traceability called CST. CST is composed of different types of on-chip sensors and in-system structures that provide the information needed to detect multiple counterfeit IC types (recycled, cloned, etc.), verify the authenticity of the system with some degree of confidence, and track/identify boards. Central to CST is an RFID tag employed as storage and a channel to read the information from different types of chips on the printed circuit board (PCB) in both power-off and power-on scenarios. Simulations and experimental results using Spartan 3E FPGAs demonstrate the effectiveness of this system. The efficiency of the radio frequency (RF) communication has also been verified via a PCB prototype with a printed slot antenna.
The Internet of Things (IoT), an emerging global network of uniquely identifiable embedded computing devices within the existing Internet infrastructure, is transforming how we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. In addition to increased communication efficiency between connected objects, the IoT also brings new security and privacy challenges. Comprehensive measures that enable IoT device authentication and secure access control need to be established. Existing hardware, software, and network protection methods, however, are designed against fraction of real security issues and lack the capability to trace the provenance and history information of IoT devices. To mitigate this shortcoming, we propose an RFID-enabled solution that aims at protecting endpoint devices in IoT supply chain. We take advantage of the connection between RFID tag and control chip in an IoT device to enable data transfer from tag memory to centralized database for authentication once deployed. Finally, we evaluate the security of our proposed scheme against various attacks.
Radio Frequency IDentification (RFID) is a technique for speedy and proficient identification system, it has been around for more than 50 years and was initially developed for improving warfare machinery. RFID technology bridges two technologies in the area of Information and Communication Technologies (ICT), namely Product Code (PC) technology and Wireless technology. This broad-based rapidly expanding technology impacts business, environment and society. The operating principle of an RFID system is as follows. The reader starts a communication process by radiating an electromagnetic wave. This wave will be intercepted by the antenna of the RFID tag, placed on the item to be identified. An induced current will be created at the tag and will activate the integrated circuit, enabling it to send back a wave to the reader. The reader redirects information to the host where it will be processed. RFID is used for wide range of applications in almost every field (Health, education, industry, security, management ...). In this review paper, we will focus on agricultural and environmental applications.