Visible to the public Biblio

Filters: Keyword is Heat-assisted magnetic recording  [Clear All Filters]
2020-11-30
Hsu, W., Victora, R. H..  2019.  Micromagnetic Study of Media Noise Plateau in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics. 55:1–4.
The relationship between integrated media noise power and linear density in heat-assisted magnetic recording (HAMR) is discussed. A noise plateau for intermediate recording density has been observed in HAMR, similar to that found in perpendicular magnetic recording (PMR). Here, we show, by changing the temperature profile of the heat spot in HAMR, that we can tune the noise plateau regions to different recording densities. The heat spot with sharp temperature gradient favors a plateau at high recording density, while the heat spot with gradual temperature gradient favors a plateau at low recording density. This effect is argued to be a consequence of the competition between transition noise and remanence noise in HAMR.
2019-09-30
Hohlfeld, J., Czoschke, P., Asselin, P., Benakli, M..  2019.  Improving Our Understanding of Measured Jitter (in HAMR). IEEE Transactions on Magnetics. 55:1–11.

The understanding of measured jitter is improved in three ways. First, it is shown that the measured jitter is not only governed by written-in jitter and the reader resolution along the cross-track direction but by remanence noise in the vicinity of transitions and the down-track reader resolution as well. Second, a novel data analysis scheme is introduced that allows for an unambiguous separation of these two contributions. Third, based on data analyses involving the first two learnings and micro-magnetic simulations, we identify and explain the root causes for variations of jitter with write current (WC) (write field), WC overshoot amplitude (write-field rise time), and linear disk velocity measured for heat-assisted magnetic recording.

Jiao, Y., Hohlfield, J., Victora, R. H..  2018.  Understanding Transition and Remanence Noise in HAMR. IEEE Transactions on Magnetics. 54:1–5.

Transition noise and remanence noise are the two most important types of media noise in heat-assisted magnetic recording. We examine two methods (spatial splitting and principal components analysis) to distinguish them: both techniques show similar trends with respect to applied field and grain pitch (GP). It was also found that PW50can be affected by GP and reader design, but is almost independent of write field and bit length (larger than 50 nm). Interestingly, our simulation shows a linear relationship between jitter and PW50NSRrem, which agrees qualitatively with experimental results.

2018-05-16
Hernández, S., Lu, P. L., Granz, S., Krivosik, P., Huang, P. W., Eppler, W., Rausch, T., Gage, E..  2017.  Using Ensemble Waveform Analysis to Compare Heat Assisted Magnetic Recording Characteristics of Modeled and Measured Signals. IEEE Transactions on Magnetics. 53:1–6.

Ensemble waveform analysis is used to calculate signal to noise ratio (SNR) and other recording characteristics from micromagnetically modeled heat assisted magnetic recording waveforms and waveforms measured at both drive and spin-stand level. Using windowing functions provides the breakdown between transition and remanence SNRs. In addition, channel bit density (CBD) can be extracted from the ensemble waveforms using the di-bit extraction method. Trends in both transition SNR, remanence SNR, and CBD as a function of ambient temperature at constant track width showed good agreement between model and measurement. Both model and drive-level measurement show degradation in SNR at higher ambient temperatures, which may be due to changes in the down-track profile at the track edges compared with track center. CBD as a function of cross-track position is also calculated for both modeling and spin-stand measurements. The CBD widening at high cross-track offset, which is observed at both measurement and model, was directly related to the radius of curvature of the written transitions observed in the model and the thermal profiles used.