Biblio
This paper outlines a set of 10 cyber security concerns associated with Industrial Control Systems (ICS). The concerns address software and hardware development, implementation, and maintenance practices, supply chain assurance, the need for cyber forensics in ICS, a lack of awareness and training, and finally, a need for test beds which can be used to address the first 9 cited concerns. The concerns documented in this paper were developed based on the authors' combined experience conducting research in this field for the US Department of Homeland Security, the National Science Foundation, and the Department of Defense. The second half of this paper documents a virtual test bed platform which is offered as a tool to address the concerns listed in the first half of the paper. The paper discusses various types of test beds proposed in literature for ICS research, provides an overview of the virtual test bed platform developed by the authors, and lists future works required to extend the existing test beds to serve as a development platform.
Modern Industrial Control Systems (ICS) rely on enterprise to plant floor connectivity. Where the size, diversity, and therefore complexity of ICS increase, operational requirements, goals, and challenges defined by users across various sub-systems follow. Recent trends in Information Technology (IT) and Operational Technology (OT) convergence may cause operators to lose a comprehensive understanding of end-to-end data flow requirements. This presents a risk to system security and resilience. Sensors were once solely applied for operational process use, but now act as inputs supporting a diverse set of organisational requirements. If these are not fully understood, incomplete risk assessment, and inappropriate implementation of security controls could occur. In search of a solution, operators may turn to standards and guidelines. This paper reviews popular standards and guidelines, prior to the presentation of a case study and conceptual tool, highlighting the importance of data flows, critical data processing points, and system-to-user relationships. The proposed approach forms a basis for risk assessment and security control implementation, aiding the evolution of ICS security and resilience.
With an immense number of threats pouring in from nation states and hacktivists as well as terrorists and cybercriminals, the requirement of a globally secure infrastructure becomes a major obligation. Most critical infrastructures were primarily designed to work isolated from the normal communication network, but due to the advent of the "Smart Grid" that uses advanced and intelligent approaches to control critical infrastructure, it is necessary for these cyber-physical systems to have access to the communication system. Consequently, such critical systems have become prime targets; hence security of critical infrastructure is currently one of the most challenging research problems. Performing an extensive security analysis involving experiments with cyber-attacks on a live industrial control system (ICS) is not possible. Therefore, researchers generally resort to test beds and complex simulations to answer questions related to SCADA systems. Since all conclusions are drawn from the test bed, it is necessary to perform validation against a physical model. This paper examines the fidelity of a virtual SCADA testbed to a physical test bed and allows for the study of the effects of cyber- attacks on both of the systems.
This paper presents a supervisory control and data acquisition (SCADA) testbed recently built at the University of New Orleans. The testbed consists of models of three industrial physical processes: a gas pipeline, a power transmission and distribution system, and a wastewater treatment plant–these systems are fully-functional and implemented at small-scale. It utilizes real-world industrial equipment such as transformers, programmable logic controllers (PLC), aerators, etc., bringing it closer to modeling real-world SCADA systems. Sensors, actuators, and PLCs are deployed at each physical process system for local control and monitoring, and the PLCs are also connected to a computer running human-machine interface (HMI) software for monitoring the status of the physical processes. The testbed is a useful resource for cybersecurity research, forensic research, and education on different aspects of SCADA systems such as PLC programming, protocol analysis, and demonstration of cyber attacks.
A distributed detection method is proposed to detect single stage multi-point (SSMP) attacks on a Cyber Physical System (CPS). Such attacks aim at compromising two or more sensors or actuators at any one stage of a CPS and could totally compromise a controller and prevent it from detecting the attack. However, as demonstrated in this work, using the flow properties of water from one stage to the other, a neighboring controller was found effective in detecting such attacks. The method is based on physical invariants derived for each stage of the CPS from its design. The attack detection effectiveness of the method was evaluated experimentally against an operational water treatment testbed containing 42 sensors and actuators. Results from the experiments point to high effectiveness of the method in detecting a variety of SSMP attacks but also point to its limitations. Distributing the attack detection code among various controllers adds to the scalability of the proposed method.
Traffic of Industrial Control System (ICS) between the Human Machine Interface (HMI) and the Programmable Logic Controller (PLC) is highly periodic. However, it is sometimes multiplexed, due to multi-threaded scheduling. In previous work we introduced a Statechart model which includes multiple Deterministic Finite Automata (DFA), one per cyclic pattern. We demonstrated that Statechart-based anomaly detection is highly effective on multiplexed cyclic traffic when the individual cyclic patterns are known. The challenge is to construct the Statechart, by unsupervised learning, from a captured trace of the multiplexed traffic, especially when the same symbols (ICS messages) can appear in multiple cycles, or multiple times in a cycle. Previously we suggested a combinatorial approach for the Statechart construction, based on Euler cycles in the Discrete Time Markov Chain (DTMC) graph of the trace. This combinatorial approach worked well in simple scenarios, but produced a false-alarm rate that was excessive on more complex multiplexed traffic. In this paper we suggest a new Statechart construction method, based on spectral analysis. We use the Fourier transform to identify the dominant periods in the trace. Our algorithm then associates a set of symbols with each dominant period, identifies the order of the symbols within each period, and creates the cyclic DFAs and the Statechart. We evaluated our solution on long traces from two production ICS: one using the Siemens S7-0x72 protocol and the other using Modbus. We also stress-tested our algorithms on a collection of synthetically-generated traces that simulate multiplexed ICS traces with varying levels of symbol uniqueness and time overlap. The resulting Statecharts model the traces with an overall median false-alarm rate as low as 0.16% on the synthetic datasets, and with zero false-alarms on production S7-0x72 traffic. Moreover, the spectral analysis Statecharts consistently out-performed the previous combinatorial Statecharts, exhibiting significantly lower false alarm rates and more compact model sizes.
In this paper, we propose a hierarchical monitoring intrusion detection system (HAMIDS) for industrial control systems (ICS). The HAMIDS framework detects the anomalies in both level 0 and level 1 of an industrial control plant. In addition, the framework aggregates the cyber-physical process data in one point for further analysis as part of the intrusion detection process. The novelty of this framework is its ability to detect anomalies that have a distributed impact on the cyber-physical process. The performance of the proposed framework evaluated as part of SWaT security showdown (S3) in which six international teams were invited to test the framework in a real industrial control system. The proposed framework outperformed other proposed academic IDS in term of detection of ICS threats during the S3 event, which was held from July 25-29, 2016 at Singapore University of Technology and Design.
Industrial Control Systems (ICS) which among others are comprised of Supervisory Control and Data Acquisition (SCADA) and Distributed Control Systems (DCS) are used to control industrial processes. ICS have now been connected to other Information Technology (IT) systems and have as a result become vulnerable to Advanced Persistent Threats (APT). APTs are targeted attacks that use zero-day attacks to attack systems. Current ICS security mechanisms fail to deter APTs from infiltrating ICS. An analysis of possible solutions to deter APTs was done. This paper proposes the use of Artificial Immune Systems to secure ICS from APTs.
When SCADA systems are exposed to public networks, attackers can more easily penetrate the control systems that operate electrical power grids, water plants, and other critical infrastructures. To detect such attacks, SCADA systems require an intrusion detection technique that can understand the information carried by their usually proprietary network protocols.
To achieve that goal, we propose to attach to SCADA systems a specification-based intrusion detection framework based on Bro [7][8], a runtime network traffic analyzer. We have built a parser in Bro to support DNP3, a network protocol widely used in SCADA systems that operate electrical power grids. This built-in parser provides a clear view of all network events related to SCADA systems. Consequently, security policies to analyze SCADA-specific semantics related to the network events can be accurately defined. As a proof of concept, we specify a protocol validation policy to verify that the semantics of the data extracted from network packets conform to protocol definitions. We performed an experimental evaluation to study the processing capabilities of the proposed intrusion detection framework.
Presented at a tutorial at the Symposium and Bootcamp on the Science of Security (HotSoS 2015), April 2015.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.
The Internet of Things (IoT) is here, more than 10 billion units are already connected and five times more devices are expected to be deployed in the next five years. Technological standarization and the management and fostering of rapid innovation by governments are among the main challenges of the IoT. However, security and privacy are the key to make the IoT reliable and trusted. Security mechanisms for the IoT should provide features such as scalability, interoperability and lightness. This paper addresses authentication and access control in the frame of the IoT. It presents Physical Unclonable Functions (PUF), which can provide cheap, secure, tamper-proof secret keys to authentify constrained M2M devices. To be successfully used in the IoT context, this technology needs to be embedded in a standardized identity and access management framework. On the other hand, Embedded Subscriber Identity Module (eSIM) can provide cellular connectivity with scalability, interoperability and standard compliant security protocols. The paper discusses an authorization scheme for a constrained resource server taking advantage of PUF and eSIM features. Concrete IoT uses cases are discussed (SCADA and building automation).
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.
- « first
- ‹ previous
- 1
- 2
- 3
- 4