Visible to the public Biblio

Filters: Keyword is three-dimensional integrated circuits  [Clear All Filters]
2020-07-09
Wang, Wei-Chen, Lin, Ping-Hsien, Li, Yung-Chun, Ho, Chien-Chung, Chang, Yu-Ming, Chang, Yuan-Hao.  2019.  Toward Instantaneous Sanitization through Disturbance-induced Errors and Recycling Programming over 3D Flash Memory. 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—8.

As data security has become one of the most crucial issues in modern storage system/application designs, the data sanitization techniques are regarded as the promising solution on 3D NAND flash-memory-based devices. Many excellent works had been proposed to exploit the in-place reprogramming, erasure and encryption techniques to achieve and implement the sanitization functionalities. However, existing sanitization approaches could lead to performance, disturbance overheads or even deciphered issues. Different from existing works, this work aims at exploring an instantaneous data sanitization scheme by taking advantage of programming disturbance properties. Our proposed design can not only achieve the instantaneous data sanitization by exploiting programming disturbance and error correction code properly, but also enhance the performance with the recycling programming design. The feasibility and capability of our proposed design are evaluated by a series of experiments on 3D NAND flash memory chips, for which we have very encouraging results. The experiment results show that the proposed design could achieve the instantaneous data sanitization with low overhead; besides, it improves the average response time and reduces the number of block erase count by up to 86.8% and 88.8%, respectively.

2015-04-30
Cioranesco, J.-M., Danger, J.-L., Graba, T., Guilley, S., Mathieu, Y., Naccache, D., Xuan Thuy Ngo.  2014.  Cryptographically secure shields. Hardware-Oriented Security and Trust (HOST), 2014 IEEE International Symposium on. :25-31.

Probing attacks are serious threats on integrated circuits. Security products often include a protective layer called shield that acts like a digital fence. In this article, we demonstrate a new shield structure that is cryptographically secure. This shield is based on the newly proposed SIMON lightweight block cipher and independent mesh lines to ensure the security against probing attacks of the hardware located behind the shield. Such structure can be proven secure against state-of-the-art invasive attacks. For the first time in the open literature, we describe a chip designed with a digital shield, and give an extensive report of its cost, in terms of power, metal layer(s) to sacrifice and of logic (including the logic to connect it to the CPU). Also, we explain how “Through Silicon Vias” (TSV) technology can be used for the protection against both frontside and backside probing.