Visible to the public Biblio

Filters: Keyword is estimation error  [Clear All Filters]
2022-07-05
Obata, Sho, Kobayashi, Koichi, Yamashita, Yuh.  2021.  On Detection of False Data Injection Attacks in Distributed State Estimation of Power Networks. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :472—473.
In power networks, it is important to detect a cyber attack. In this paper, we propose a detection method of false data injection (FDI) attacks. FDI attacks cannot be detected from the estimation error in power networks. The proposed method is based on the distributed state estimation, and is used the tentative estimated state. The proposed method is demonstrated by a numerical example on the IEEE 14-bus system.
Obata, Sho, Kobayashi, Koichi, Yamashita, Yuh.  2021.  Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
In state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection attack. In this paper, to enforce security of power networks, we propose a method of detecting a false data injection attack. In the proposed method, a false data injection attack is detected by randomly choosing sensors used in state estimation. The effectiveness of the proposed method is presented by two numerical examples including the IEEE 14-bus system.
2020-11-20
Sui, T., Marelli, D., Sun, X., Fu, M..  2019.  Stealthiness of Attacks and Vulnerability of Stochastic Linear Systems. 2019 12th Asian Control Conference (ASCC). :734—739.
The security of Cyber-physical systems has been a hot topic in recent years. There are two main focuses in this area: Firstly, what kind of attacks can avoid detection, i.e., the stealthiness of attacks. Secondly, what kind of systems can stay stable under stealthy attacks, i.e., the invulnerability of systems. In this paper, we will give a detailed characterization for stealthy attacks and detection criterion for such attacks. We will also study conditions for the vulnerability of a stochastic linear system under stealthy attacks.
2020-08-03
Moradi, Ashkan, Venkategowda, Naveen K. D., Werner, Stefan.  2019.  Coordinated Data-Falsification Attacks in Consensus-based Distributed Kalman Filtering. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). :495–499.
This paper considers consensus-based distributed Kalman filtering subject to data-falsification attack, where Byzantine agents share manipulated data with their neighboring agents. The attack is assumed to be coordinated among the Byzantine agents and follows a linear model. The goal of the Byzantine agents is to maximize the network-wide estimation error while evading false-data detectors at honest agents. To that end, we propose a joint selection of Byzantine agents and covariance matrices of attack sequences to maximize the network-wide estimation error subject to constraints on stealthiness and the number of Byzantine agents. The attack strategy is then obtained by employing block-coordinate descent method via Boolean relaxation and backward stepwise based subset selection method. Numerical results show the efficiency of the proposed attack strategy in comparison with other naive and uncoordinated attacks.
2018-09-28
Dem'yanov, D. N..  2017.  Analytical synthesis of reduced order observer for estimation of the bilinear dynamic system state. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–5.

The problem of analytical synthesis of the reduced order state observer for the bilinear dynamic system with scalar input and vector output has been considered. Formulas for calculation of the matrix coefficients of the nonlinear observer with estimation error asymptotically approaching zero have been obtained. Two modifications of observer dynamic equation have been proposed: the first one requires differentiation of an output signal and the second one does not. Based on the matrix canonization technology, the solvability conditions for the synthesis problem and analytical expressions for an acceptable set of solutions have been received. A precise step-by-step algorithm for calculating the observer coefficients has been offered. An example of the practical use of the developed algorithm has been given.