Visible to the public Biblio

Filters: Keyword is security keys  [Clear All Filters]
2018-11-14
Krishna, M. B., Rodrigues, J. J. P. C..  2017.  Two-Phase Incentive-Based Secure Key System for Data Management in Internet of Things. 2017 IEEE International Conference on Communications (ICC). :1–6.

Internet of Things (IoT) distributed secure data management system is characterized by authentication, privacy policies to preserve data integrity. Multi-phase security and privacy policies ensure confidentiality and trust between the users and service providers. In this regard, we present a novel Two-phase Incentive-based Secure Key (TISK) system for distributed data management in IoT. The proposed system classifies the IoT user nodes and assigns low-level, high-level security keys for data transactions. Low-level secure keys are generic light-weight keys used by the data collector nodes and data aggregator nodes for trusted transactions. TISK phase-I Generic Service Manager (GSM-C) module verifies the IoT devices based on self-trust incentive and server-trust incentive levels. High-level secure keys are dedicated special purpose keys utilized by data manager nodes and data expert nodes for authorized transactions. TISK phase-II Dedicated Service Manager (DSM-C) module verifies the certificates issued by GSM-C module. DSM-C module further issues high-level secure keys to data manager nodes and data expert nodes for specific purpose transactions. Simulation results indicate that the proposed TISK system reduces the key complexity and key cost to ensure distributed secure data management in IoT network.

2018-05-24
Rajagopalan, S., Rethinam, S., Deepika, A. N., Priyadarshini, A., Jyothirmai, M., Rengarajan, A..  2017.  Design of Boolean Chaotic Oscillator Using CMOS Technology for True Random Number Generation. 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS). :1–6.

True random numbers have a fair role in modern digital transactions. In order to achieve secured authentication, true random numbers are generated as security keys which are highly unpredictable and non-repetitive. True random number generators are used mainly in the field of cryptography to generate random cryptographic keys for secure data transmission. The proposed work aims at the generation of true random numbers based on CMOS Boolean Chaotic Oscillator. As a part of this work, ASIC approach of CMOS Boolean Chaotic Oscillator is modelled and simulated using Cadence Virtuoso tool based on 45nm CMOS technology. Besides, prototype model has been implemented with circuit components and analysed using NI ELVIS platform. The strength of the generated random numbers was ensured by NIST (National Institute of Standards and Technology) Test Suite and ASIC approach was validated through various parameters by performing various analyses such as frequency, delay and power.