Visible to the public Biblio

Filters: Keyword is Reflective binary codes  [Clear All Filters]
2022-07-01
Cribbs, Michael, Romero, Ric, Ha, Tri.  2021.  Modulation-Based Physical Layer Security via Gray Code Hopping. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–6.
A physical layer security (PLS) technique called Gray Code Hopping (GCH) is presented offering simplistic implementation and no bit error rate (BER) performance degradation over the main channel. A synchronized transmitter and receiver "hop" to an alternative binary reflected Gray code (BRGC) mapping of bits to symbols between each consecutive modulation symbol. Monte Carlo simulations show improved BER performance over a similar technique from the literature. Simulations also confirm compatibility of GCH with either hard or soft decision decoding methods. Simplicity of GCH allows for ready implementation in adaptive 5th Generation New Radio (5G NR) modulation coding schemes.
2022-02-10
Wang, Xiangyu, Ma, Jianfeng, Liu, Ximeng, Deng, Robert H., Miao, Yinbin, Zhu, Dan, Ma, Zhuoran.  2020.  Search Me in the Dark: Privacy-preserving Boolean Range Query over Encrypted Spatial Data. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2253–2262.
With the increasing popularity of geo-positioning technologies and mobile Internet, spatial keyword data services have attracted growing interest from both the industrial and academic communities in recent years. Meanwhile, a massive amount of data is increasingly being outsourced to cloud in the encrypted form for enjoying the advantages of cloud computing while without compromising data privacy. Most existing works primarily focus on the privacy-preserving schemes for either spatial or keyword queries, and they cannot be directly applied to solve the spatial keyword query problem over encrypted data. In this paper, we study the challenging problem of Privacy-preserving Boolean Range Query (PBRQ) over encrypted spatial databases. In particular, we propose two novel PBRQ schemes. Firstly, we present a scheme with linear search complexity based on the space-filling curve code and Symmetric-key Hidden Vector Encryption (SHVE). Then, we use tree structures to achieve faster-than-linear search complexity. Thorough security analysis shows that data security and query privacy can be guaranteed during the query process. Experimental results using real-world datasets show that the proposed schemes are efficient and feasible for practical applications, which is at least ×70 faster than existing techniques in the literature.
ISSN: 2641-9874
2021-08-02
Gao, Xiaomiao, Du, Wenjie, Liu, Weijiang, Wu, Ruiwen, Zhan, Furui.  2020.  A Lightweight and Efficient Physical Layer Key Generation Mechanism for MANETs. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1010–1015.
Due to the reciprocity of wireless channels, the communication parties can directly extract the shared key from channel. This solution were verified through several schemes. However, in real situations, channel sampling of legitimate transceivers might be impacted by noises and other interferences, which makes the channel states obtained by initiator and responder might be obvious different. The efficiency and even availability of physical layer key generation are thus reduced. In this paper, we propose a lightweight and efficient physical layer key generation scheme, which extract shared secret keys from channel state information (CSI). To improve the key generation process, the discrete cosine transform (DCT) is employed to reduce differences of channel states of legitimate transceivers. Then, these outputs are quantified and encoded through multi-bit adaptive quantization(MAQ) quantizer and gray code to generate binary bit sequence, which can greatly reduce the bit error rate. Moreover, the low density parity check (LDPC) code and universal hashing functions are used to achieve information reconciliation and privacy amplifification. By adding preprocessing methods in the key generation process and using the rich information of CSI, the security of communications can be increased on the basis of improving the key generation rate. To evaluate this scheme, a number of experiments in various real environments are conducted. The experimental results show that the proposed scheme can effificiently generate shared secret keys for nodes and protect their communication.