Visible to the public Biblio

Filters: Keyword is intelligent algorithms  [Clear All Filters]
2021-02-16
Jin, Z., Yu, P., Guo, S. Y., Feng, L., Zhou, F., Tao, M., Li, W., Qiu, X., Shi, L..  2020.  Cyber-Physical Risk Driven Routing Planning with Deep Reinforcement-Learning in Smart Grid Communication Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1278—1283.
In modern grid systems which is a typical cyber-physical System (CPS), information space and physical space are closely related. Once the communication link is interrupted, it will make a great damage to the power system. If the service path is too concentrated, the risk will be greatly increased. In order to solve this problem, this paper constructs a route planning algorithm that combines node load pressure, link load balance and service delay risk. At present, the existing intelligent algorithms are easy to fall into the local optimal value, so we chooses the deep reinforcement learning algorithm (DRL). Firstly, we build a risk assessment model. The node risk assessment index is established by using the node load pressure, and then the link risk assessment index is established by using the average service communication delay and link balance degree. The route planning problem is then solved by a route planning algorithm based on DRL. Finally, experiments are carried out in a simulation scenario of a power grid system. The results show that our method can find a lower risk path than the original Dijkstra algorithm and the Constraint-Dijkstra algorithm.
2018-05-30
P, Rahoof P., Nair, L. R., P, Thafasal Ijyas V..  2017.  Trust Structure in Public Key Infrastructures. 2017 2nd International Conference on Anti-Cyber Crimes (ICACC). :223–227.

Recently perceived vulnerabilities in public key infrastructures (PKI) demand that a semantic or cognitive definition of trust is essential for augmenting the security through trust formulations. In this paper, we examine the meaning of trust in PKIs. Properly categorized trust can help in developing intelligent algorithms that can adapt to the security and privacy requirements of the clients. We delineate the different types of trust in a generic PKI model.