Visible to the public Biblio

Filters: Keyword is attack signatures  [Clear All Filters]
2020-08-17
Paudel, Ramesh, Muncy, Timothy, Eberle, William.  2019.  Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data). :5249–5258.
The use of the Internet of Things (IoT) devices has surged in recent years. However, due to the lack of substantial security, IoT devices are vulnerable to cyber-attacks like Denial-of-Service (DoS) attacks. Most of the current security solutions are either computationally expensive or unscalable as they require known attack signatures or full packet inspection. In this paper, we introduce a novel Graph-based Outlier Detection in Internet of Things (GODIT) approach that (i) represents smart home IoT traffic as a real-time graph stream, (ii) efficiently processes graph data, and (iii) detects DoS attack in real-time. The experimental results on real-world data collected from IoT-equipped smart home show that GODIT is more effective than the traditional machine learning approaches, and is able to outperform current graph-stream anomaly detection approaches.
2018-06-07
Appiah, B., Opoku-Mensah, E., Qin, Z..  2017.  SQL injection attack detection using fingerprints and pattern matching technique. 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). :583–587.

Web-Based applications are becoming more increasingly technically complex and sophisticated. The very nature of their feature-rich design and their capability to collate, process, and disseminate information over the Internet or from within an intranet makes them a popular target for attack. According to Open Web Application Security Project (OWASP) Top Ten Cheat sheet-2017, SQL Injection Attack is at peak among online attacks. This can be attributed primarily to lack of awareness on software security. Developing effective SQL injection detection approaches has been a challenge in spite of extensive research in this area. In this paper, we propose a signature based SQL injection attack detection framework by integrating fingerprinting method and Pattern Matching to distinguish genuine SQL queries from malicious queries. Our framework monitors SQL queries to the database and compares them against a dataset of signatures from known SQL injection attacks. If the fingerprint method cannot determine the legitimacy of query alone, then the Aho Corasick algorithm is invoked to ascertain whether attack signatures appear in the queries. The initial experimental results of our framework indicate the approach can identify wide variety of SQL injection attacks with negligible impact on performance.

2018-05-30
Shahriar, H., Bond, W..  2017.  Towards an Attack Signature Generation Framework for Intrusion Detection Systems. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :597–603.
Attacks on web services are major concerns and can expose organizations valuable information resources. Despite there are increasing awareness in secure programming, we still find vulnerabilities in web services. To protect deployed web services, it is important to have defense techniques. Signaturebased Intrusion Detection Systems (IDS) have gained popularity to protect applications against attacks. However, signature IDSs have limited number of attack signatures. In this paper, we propose a Genetic Algorithm (GA)-based attack signature generation approach and show its application for web services. GA algorithm has the capability of generating new member from a set of initial population. We leverage this by generating new attack signatures at SOAP message level to overcome the challenge of limited number of attack signatures. The key contributions include defining chromosomes and fitness functions. The initial results show that the GA-based IDS can generate new signatures and complement the limitation of existing web security testing tools. The approach can generate new attack signatures for injection, privilege escalation, denial of service and information leakage.