Visible to the public Biblio

Filters: Keyword is substitute model  [Clear All Filters]
2022-12-20
Liu, Xiaolei, Li, Xiaoyu, Zheng, Desheng, Bai, Jiayu, Peng, Yu, Zhang, Shibin.  2022.  Automatic Selection Attacks Framework for Hard Label Black-Box Models. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–7.

The current adversarial attacks against machine learning models can be divided into white-box attacks and black-box attacks. Further the black-box can be subdivided into soft label and hard label black-box, but the latter has the deficiency of only returning the class with the highest prediction probability, which leads to the difficulty in gradient estimation. However, due to its wide application, it is of great research significance and application value to explore hard label blackbox attacks. This paper proposes an Automatic Selection Attacks Framework (ASAF) for hard label black-box models, which can be explained in two aspects based on the existing attack methods. Firstly, ASAF applies model equivalence to select substitute models automatically so as to generate adversarial examples and then completes black-box attacks based on their transferability. Secondly, specified feature selection and parallel attack method are proposed to shorten the attack time and improve the attack success rate. The experimental results show that ASAF can achieve more than 90% success rate of nontargeted attack on the common models of traditional dataset ResNet-101 (CIFAR10) and InceptionV4 (ImageNet). Meanwhile, compared with FGSM and other attack algorithms, the attack time is reduced by at least 89.7% and 87.8% respectively in two traditional datasets. Besides, it can achieve 90% success rate of attack on the online model, BaiduAI digital recognition. In conclusion, ASAF is the first automatic selection attacks framework for hard label blackbox models, in which specified feature selection and parallel attack methods speed up automatic attacks.

2021-03-09
Cui, W., Li, X., Huang, J., Wang, W., Wang, S., Chen, J..  2020.  Substitute Model Generation for Black-Box Adversarial Attack Based on Knowledge Distillation. 2020 IEEE International Conference on Image Processing (ICIP). :648–652.
Although deep convolutional neural network (CNN) performs well in many computer vision tasks, its classification mechanism is very vulnerable when it is exposed to the perturbation of adversarial attacks. In this paper, we proposed a new algorithm to generate the substitute model of black-box CNN models by using knowledge distillation. The proposed algorithm distills multiple CNN teacher models to a compact student model as the substitution of other black-box CNN models to be attacked. The black-box adversarial samples can be consequently generated on this substitute model by using various white-box attacking methods. According to our experiments on ResNet18 and DenseNet121, our algorithm boosts the attacking success rate (ASR) by 20% by training the substitute model based on knowledge distillation.
2020-12-28
Raju, R. S., Lipasti, M..  2020.  BlurNet: Defense by Filtering the Feature Maps. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :38—46.

Recently, the field of adversarial machine learning has been garnering attention by showing that state-of-the-art deep neural networks are vulnerable to adversarial examples, stemming from small perturbations being added to the input image. Adversarial examples are generated by a malicious adversary by obtaining access to the model parameters, such as gradient information, to alter the input or by attacking a substitute model and transferring those malicious examples over to attack the victim model. Specifically, one of these attack algorithms, Robust Physical Perturbations (RP2), generates adversarial images of stop signs with black and white stickers to achieve high targeted misclassification rates against standard-architecture traffic sign classifiers. In this paper, we propose BlurNet, a defense against the RP2 attack. First, we motivate the defense with a frequency analysis of the first layer feature maps of the network on the LISA dataset, which shows that high frequency noise is introduced into the input image by the RP2 algorithm. To remove the high frequency noise, we introduce a depthwise convolution layer of standard blur kernels after the first layer. We perform a blackbox transfer attack to show that low-pass filtering the feature maps is more beneficial than filtering the input. We then present various regularization schemes to incorporate this lowpass filtering behavior into the training regime of the network and perform white-box attacks. We conclude with an adaptive attack evaluation to show that the success rate of the attack drops from 90% to 20% with total variation regularization, one of the proposed defenses.

2018-06-07
Chen, Pin-Yu, Zhang, Huan, Sharma, Yash, Yi, Jinfeng, Hsieh, Cho-Jui.  2017.  ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks Without Training Substitute Models. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :15–26.
Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs. Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to efficiently attack black-box models. By exploiting zeroth order optimization, improved attacks to the targeted DNN can be accomplished, sparing the need for training substitute models and avoiding the loss in attack transferability. Experimental results on MNIST, CIFAR10 and ImageNet show that the proposed ZOO attack is as effective as the state-of-the-art white-box attack (e.g., Carlini and Wagner's attack) and significantly outperforms existing black-box attacks via substitute models.