Biblio
The effects of quantum confinement on the charge distribution in planar Double-Gate (DG) SOI (Siliconon-Insulator) MOSFETs were examined, for sub-10 nm SOI film thicknesses (tsi $łeq$ 10 nm), by modeling the potential experienced by the charge carriers as that of an an-harmonic oscillator potential, consistent with the inherent structural symmetry of nanoscale symmetric DGSOI MOSFETs. By solving the 1-D Poisson's equation using this potential, the results obtained were validated through comparisons with TCAD simulations. The present model satisfactorily predicted the electron density and channel charge density for a wide range of SOI channel thicknesses and gate voltages.
State-of-the-art convolutional neural networks (ConvNets) are now able to achieve near human performance on a wide range of classification tasks. Unfortunately, current hardware implementations of ConvNets are memory power intensive, prohibiting deployment in low-power embedded systems and IoE platforms. One method of reducing memory power is to exploit the error resilience of ConvNets and accept bit errors under reduced supply voltages. In this paper, we extensively study the effectiveness of this idea and show that further savings are possible by injecting bit errors during ConvNet training. Measurements on an 8KB SRAM in 28nm UTBB FD-SOI CMOS demonstrate supply voltage reduction of 310mV, which results in up to 5.4× leakage power reduction and up to 2.9× memory access power reduction at 99% of floating-point classification accuracy, with no additional hardware cost. To our knowledge, this is the first silicon-validated study on the effect of bit errors in ConvNets.