Visible to the public Biblio

Filters: Keyword is data sparsity  [Clear All Filters]
2020-11-23
Li, W., Zhu, H., Zhou, X., Shimizu, S., Xin, M., Jin, Q..  2018.  A Novel Personalized Recommendation Algorithm Based on Trust Relevancy Degree. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :418–422.
The rapid development of the Internet and ecommerce has brought a lot of convenience to people's life. Personalized recommendation technology provides users with services that they may be interested according to users' information such as personal characteristics and historical behaviors. The research of personalized recommendation has been a hot point of data mining and social networks. In this paper, we focus on resolving the problem of data sparsity based on users' rating data and social network information, introduce a set of new measures for social trust and propose a novel personalized recommendation algorithm based on matrix factorization combining trust relevancy. Our experiments were performed on the Dianping datasets. The results show that our algorithm outperforms traditional approaches in terms of accuracy and stability.
2019-12-09
Yang, Chao, Chen, Xinghe, Song, Tingting, Jiang, Bin, Liu, Qin.  2018.  A Hybrid Recommendation Algorithm Based on Heuristic Similarity and Trust Measure. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1413–1418.
In this paper, we propose a hybrid collaborative filtering recommendation algorithm based on heuristic similarity and trust measure, in order to alleviate the problem of data sparsity, cold start and trust measure. Firstly, a new similarity measure is implemented by weighted fusion of multiple similarity influence factors obtained from the rating matrix, so that the similarity measure becomes more accurate. Then, a user trust relationship computing model is implemented by constructing the user's trust network based on the trust propagation theory. On this basis, a SIMT collaborative filtering algorithm is designed which integrates trust and similarity instead of the similarity in traditional collaborative filtering algorithm. Further, an improved K nearest neighbor recommendation based on clustering algorithm is implemented for generation of a better recommendation list. Finally, a comparative experiment on FilmTrust dataset shows that the proposed algorithm has improved the quality and accuracy of recommendation, thus overcome the problem of data sparsity, cold start and trust measure to a certain extent.
2018-06-07
Whatmough, P. N., Lee, S. K., Lee, H., Rama, S., Brooks, D., Wei, G. Y..  2017.  14.3 A 28nm SoC with a 1.2GHz 568nJ/prediction sparse deep-neural-network engine with \#x003E;0.1 timing error rate tolerance for IoT applications. 2017 IEEE International Solid-State Circuits Conference (ISSCC). :242–243.

This paper presents a 28nm SoC with a programmable FC-DNN accelerator design that demonstrates: (1) HW support to exploit data sparsity by eliding unnecessary computations (4× energy reduction); (2) improved algorithmic error tolerance using sign-magnitude number format for weights and datapath computation; (3) improved circuit-level timing violation tolerance in datapath logic via timeborrowing; (4) combined circuit and algorithmic resilience with Razor timing violation detection to reduce energy via VDD scaling or increase throughput via FCLK scaling; and (5) high classification accuracy (98.36% for MNIST test set) while tolerating aggregate timing violation rates \textbackslashtextgreater10-1. The accelerator achieves a minimum energy of 0.36μJ/pred at 667MHz, maximum throughput at 1.2GHz and 0.57μJ/pred, or a 10%-margined operating point at 1GHz and 0.58μJ/pred.