Visible to the public Biblio

Filters: Keyword is Grammar  [Clear All Filters]
2023-07-31
Xu, Xuefei.  2022.  Design and Implementation of English Grammar Error Correction System Based on Deep Learning. 2022 3rd International Conference on Information Science and Education (ICISE-IE). :78—81.
At present, our English error correction algorithm is slightly general, the error correction ability is also very limited, and its accuracy rate is also low, so it is very necessary to improve. This article will further explore the problem of syntax error correction, and the corresponding algorithm model will also be proposed. Based on deep learning technology to improve the error correction rate of English grammar, put forward the corresponding solution, put forward the Sep2seq-based English grammar error correction system model, and carry out a series of rectifications to improve its efficiency and accuracy. The basic architecture of TensorFLOW is used to implement the model, and the success of the error correction algorithm model is proved, which brings great improvement and progress to the success of error correction.
2023-03-17
Kharitonov, Valerij A., Krivogina, Darya N., Salamatina, Anna S., Guselnikova, Elina D., Spirina, Varvara S., Markvirer, Vladlena D..  2022.  Intelligent Technologies for Projective Thinking and Research Management in the Knowledge Representation System. 2022 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :292–295.
It is proposed to address existing methodological issues in the educational process with the development of intellectual technologies and knowledge representation systems to improve the efficiency of higher education institutions. For this purpose, the structure of relational database is proposed, it will store the information about defended dissertations in the form of a set of attributes (heuristics), representing the mandatory qualification attributes of theses. An inference algorithm is proposed to process the information. This algorithm represents an artificial intelligence, its work is aimed at generating queries based on the applicant preferences. The result of the algorithm's work will be a set of choices, presented in ranked order. Given technologies will allow applicants to quickly become familiar with known scientific results and serve as a starting point for new research. The demand for co-researcher practice in solving the problem of updating the projective thinking methodology and managing the scientific research process has been justified. This article pays attention to the existing parallels between the concepts of technical and human sciences in the framework of their convergence. The concepts of being (economic good and economic utility) and the concepts of consciousness (humanitarian economic good and humanitarian economic utility) are used to form projective thinking. They form direct and inverse correspondences of technology and humanitarian practice in the techno-humanitarian mathematical space. It is proposed to place processed information from the language of context-free formal grammar dissertation abstracts in this space. The principle of data manipulation based on formal languages with context-free grammar allows to create new structures of subject areas in terms of applicants' preferences.It is believed that the success of applicants’ work depends directly on the cognitive training of applicants, which needs to be practiced psychologically. This practice is based on deepening the objectivity and adequacy qualities of obtaining information on the basis of heuristic methods. It requires increased attention and development of intelligence. The paper studies the use of heuristic methods by applicants to find new research directions leads to several promising results. These results can be perceived as potential options in future research. This contributes to an increase in the level of retention of higher education professionals.
2023-03-06
Beasley, Zachariah, Friedman, Alon, Pieg, Les, Rosen, Paul.  2020.  Leveraging Peer Feedback to Improve Visualization Education. 2020 IEEE Pacific Visualization Symposium (PacificVis). :146–155.
Peer review is a widely utilized pedagogical feedback mechanism for engaging students, which has been shown to improve educational outcomes. However, we find limited discussion and empirical measurement of peer review in visualization coursework. In addition to engagement, peer review provides direct and diverse feedback and reinforces recently-learned course concepts through critical evaluation of others’ work. In this paper, we discuss the construction and application of peer review in a computer science visualization course, including: projects that reuse code and visualizations in a feedback-guided, continual improvement process and a peer review rubric to reinforce key course concepts. To measure the effectiveness of the approach, we evaluate student projects, peer review text, and a post-course questionnaire from 3 semesters of mixed undergraduate and graduate courses. The results indicate that course concepts are reinforced with peer review—82% reported learning more because of peer review, and 75% of students recommended continuing it. Finally, we provide a road-map for adapting peer review to other visualization courses to produce more highly engaged students.
ISSN: 2165-8773
2021-09-21
Petrenko, Sergei A., Petrenko, Alexey S., Makoveichuk, Krystina A., Olifirov, Alexander V..  2020.  "Digital Bombs" Neutralization Method. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :446–451.
The article discusses new models and methods for timely identification and blocking of malicious code of critically important information infrastructure based on static and dynamic analysis of executable program codes. A two-stage method for detecting malicious code in the executable program codes (the so-called "digital bombs") is described. The first step of the method is to build the initial program model in the form of a control graph, the construction is carried out at the stage of static analysis of the program. The article discusses the purpose, features and construction criteria of an ordered control graph. The second step of the method is to embed control points in the program's executable code for organizing control of the possible behavior of the program using a specially designed recognition automaton - an automaton of dynamic control. Structural criteria for the completeness of the functional control of the subprogram are given. The practical implementation of the proposed models and methods was completed and presented in a special instrumental complex IRIDA.
2021-06-01
Patnaikuni, Shrinivasan, Gengaje, Sachin.  2020.  Properness and Consistency of Syntactico-Semantic Reasoning using PCFG and MEBN. 2020 International Conference on Communication and Signal Processing (ICCSP). :0554–0557.
The paper proposes a formal approach for parsing grammatical derivations in the context of the principle of semantic compositionality by defining a mapping between Probabilistic Context Free Grammar (PCFG) and Multi Entity Bayesian Network (MEBN) theory, which is a first-order logic for modelling probabilistic knowledge bases. The principle of semantic compositionality states that meaning of compound expressions is dependent on meanings of constituent expressions forming the compound expression. Typical pattern analysis applications focus on syntactic patterns ignoring semantic patterns governing the domain in which pattern analysis is attempted. The paper introduces the concepts and terminologies of the mapping between PCFG and MEBN theory. Further the paper outlines a modified version of CYK parser algorithm for parsing PCFG derivations driven by MEBN. Using Kullback- Leibler divergence an outline for proving properness and consistency of the PCFG mapped with MEBN is discussed.
2021-03-01
Taylor, E., Shekhar, S., Taylor, G. W..  2020.  Response Time Analysis for Explainability of Visual Processing in CNNs. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :1555–1558.
Explainable artificial intelligence (XAI) methods rely on access to model architecture and parameters that is not always feasible for most users, practitioners, and regulators. Inspired by cognitive psychology, we present a case for response times (RTs) as a technique for XAI. RTs are observable without access to the model. Moreover, dynamic inference models performing conditional computation generate variable RTs for visual learning tasks depending on hierarchical representations. We show that MSDNet, a conditional computation model with early-exit architecture, exhibits slower RT for images with more complex features in the ObjectNet test set, as well as the human phenomenon of scene grammar, where object recognition depends on intrascene object-object relationships. These results cast light on MSDNet's feature space without opening the black box and illustrate the promise of RT methods for XAI.
2020-12-11
Xie, J., Zhang, M., Ma, Y..  2019.  Using Format Migration and Preservation Metadata to Support Digital Preservation of Scientific Data. 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS). :1—6.

With the development of e-Science and data intensive scientific discovery, it needs to ensure scientific data available for the long-term, with the goal that the valuable scientific data should be discovered and re-used for downstream investigations, either alone, or in combination with newly generated data. As such, the preservation of scientific data enables that not only might experiment be reproducible and verifiable, but also new questions can be raised by other scientists to promote research and innovation. In this paper, we focus on the two main problems of digital preservation that are format migration and preservation metadata. Format migration includes both format verification and object transformation. The system architecture of format migration and preservation metadata is presented, mapping rules of object transformation are analyzed, data fixity and integrity and authenticity, digital signature and so on are discussed and an example is shown in detail.

2020-09-28
Simos, Dimitris E., Garn, Bernhard, Zivanovic, Jovan, Leithner, Manuel.  2019.  Practical Combinatorial Testing for XSS Detection using Locally Optimized Attack Models. 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :122–130.
In this paper, we present a combinatorial testing methodology for automated black-box security testing of complex web applications. The focus of our work is the identification of Cross-site Scripting (XSS) vulnerabilities. We introduce a new modelling scheme for test case generation of XSS attack vectors consisting of locally optimized attack models. The modelling approach takes into account the response and behavior of the web application and is particularly efficient when used in conjunction with combinatorial testing. In addition to the modelling scheme, we present a research prototype of a security testing tool called XSSInjector, which executes attack vectors generated from our methodology against web applications. The tool also employs a newly developed test oracle for detecting XSS which allow us to precisely identify whether injected JavaScript is actually executed and thus eliminate false positives. Our testing methodology is sufficiently generic to be applied to any web application that returns HTML code. We describe the foundations of our approach and validate it via an extensive case study using a verification framework and real world web applications. In particular, we have found several new critical vulnerabilities in popular forum software, library management systems and gallery packages.
2020-08-28
Traylor, Terry, Straub, Jeremy, Gurmeet, Snell, Nicholas.  2019.  Classifying Fake News Articles Using Natural Language Processing to Identify In-Article Attribution as a Supervised Learning Estimator. 2019 IEEE 13th International Conference on Semantic Computing (ICSC). :445—449.

Intentionally deceptive content presented under the guise of legitimate journalism is a worldwide information accuracy and integrity problem that affects opinion forming, decision making, and voting patterns. Most so-called `fake news' is initially distributed over social media conduits like Facebook and Twitter and later finds its way onto mainstream media platforms such as traditional television and radio news. The fake news stories that are initially seeded over social media platforms share key linguistic characteristics such as making excessive use of unsubstantiated hyperbole and non-attributed quoted content. In this paper, the results of a fake news identification study that documents the performance of a fake news classifier are presented. The Textblob, Natural Language, and SciPy Toolkits were used to develop a novel fake news detector that uses quoted attribution in a Bayesian machine learning system as a key feature to estimate the likelihood that a news article is fake. The resultant process precision is 63.333% effective at assessing the likelihood that an article with quotes is fake. This process is called influence mining and this novel technique is presented as a method that can be used to enable fake news and even propaganda detection. In this paper, the research process, technical analysis, technical linguistics work, and classifier performance and results are presented. The paper concludes with a discussion of how the current system will evolve into an influence mining system.

2020-04-13
Verma, Dinesh, Bertino, Elisa, de Mel, Geeth, Melrose, John.  2019.  On the Impact of Generative Policies on Security Metrics. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :104–109.
Policy based Security Management in an accepted practice in the industry, and required to simplify the administrative overhead associated with security management in complex systems. However, the growing dynamicity, complexity and scale of modern systems makes it difficult to write the security policies manually. Using AI, we can generate policies automatically. Security policies generated automatically can reduce the manual burden introduced in defining policies, but their impact on the overall security of a system is unclear. In this paper, we discuss the security metrics that can be associated with a system using generative policies, and provide a simple model to determine the conditions under which generating security policies will be beneficial to improve the security of the system. We also show that for some types of security metrics, a system using generative policies can be considered as equivalent to a system using manually defined policies, and the security metrics of the generative policy based system can be mapped to the security metrics of the manual system and vice-versa.
2020-02-10
Simos, Dimitris E., Zivanovic, Jovan, Leithner, Manuel.  2019.  Automated Combinatorial Testing for Detecting SQL Vulnerabilities in Web Applications. 2019 IEEE/ACM 14th International Workshop on Automation of Software Test (AST). :55–61.

In this paper, we present a combinatorial testing methodology for testing web applications in regards to SQL injection vulnerabilities. We describe three attack grammars that were developed and used to generate concrete attack vectors. Furthermore, we present and evaluate two different oracles used to observe the application's behavior when subjected to such attack vectors. We also present a prototype tool called SQLInjector capable of automated SQL injection vulnerability testing for web applications. The developed methodology can be applied to any web application that uses server side scripting and HTML for handling user input and has a SQL database backend. Our approach relies on the use of a database proxy, making this a gray-box testing method. We establish the effectiveness of the proposed tool with the WAVSEP verification framework and conduct a case study on real-world web applications, where we are able to discover both known vulnerabilities and additional previously undiscovered flaws.

Gao, Hongcan, Zhu, Jingwen, Liu, Lei, Xu, Jing, Wu, Yanfeng, Liu, Ao.  2019.  Detecting SQL Injection Attacks Using Grammar Pattern Recognition and Access Behavior Mining. 2019 IEEE International Conference on Energy Internet (ICEI). :493–498.
SQL injection attacks are a kind of the greatest security risks on Web applications. Much research has been done to detect SQL injection attacks by rule matching and syntax tree. However, due to the complexity and variety of SQL injection vulnerabilities, these approaches fail to detect unknown and variable SQL injection attacks. In this paper, we propose a model, ATTAR, to detect SQL injection attacks using grammar pattern recognition and access behavior mining. The most important idea of our model is to extract and analyze features of SQL injection attacks in Web access logs. To achieve this goal, we first extract and customize Web access log fields from Web applications. Then we design a grammar pattern recognizer and an access behavior miner to obtain the grammatical and behavioral features of SQL injection attacks, respectively. Finally, based on two feature sets, machine learning algorithms, e.g., Naive Bayesian, SVM, ID3, Random Forest, and K-means, are used to train and detect our model. We evaluated our model on these two feature sets, and the results show that the proposed model can effectively detect SQL injection attacks with lower false negative rate and false positive rate. In addition, comparing the accuracy of our model based on different algorithms, ID3 and Random Forest have a better ability to detect various kinds of SQL injection attacks.
2019-01-21
Umar, K., Sultan, A. B., Zulzalil, H., Admodisastro, N., Abdullah, M. T..  2018.  Formulation of SQL Injection Vulnerability Detection as Grammar Reachability Problem. 2018 International Conference on Information and Communication Technology for the Muslim World (ICT4M). :179–184.

Data dependency flow have been reformulated as Context Free Grammar (CFG) reachability problem, and the idea was explored in detection of some web vulnerabilities, particularly Cross Site Scripting (XSS) and Access Control. However, reformulation of SQL Injection Vulnerability (SQLIV) detection as grammar reachability problem has not been investigated. In this paper, concepts of data dependency flow was used to reformulate SQLIVs detection as a CFG reachability problem. The paper, consequently defines reachability analysis strategy for SQLIVs detection.

2018-05-09
Barenghi, A., Mainardi, N., Pelosi, G..  2017.  A Security Audit of the OpenPGP Format. 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks 2017 11th International Conference on Frontier of Computer Science and Technology 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC). :336–343.

For over two decades the OpenPGP format has provided the mainstay of email confidentiality and authenticity, and is currently being relied upon to provide authenticated package distributions in open source Unix systems. In this work, we provide the first language theoretical analysis of the OpenPGP format, classifying it as a deterministic context free language and establishing that an automatically generated parser can in principle be defined. However, we show that the number of rules required to describe it with a deterministic context free grammar is prohibitively high, and we identify security vulnerabilities in the OpenPGP format specification. We identify possible attacks aimed at tampering with messages and certificates while retaining their syntactical and semantical validity. We evaluate the effectiveness of these attacks against the two OpenPGP implementations covering the overwhelming majority of uses, i.e., the GNU Privacy Guard (GPG) and Symantec PGP. The results of the evaluation show that both implementations turn out not to be vulnerable due to conser- vative choices in dealing with malicious input data. Finally, we provide guidelines to improve the OpenPGP specification

2018-02-15
Bieschke, T., Hermerschmidt, L., Rumpe, B., Stanchev, P..  2017.  Eliminating Input-Based Attacks by Deriving Automated Encoders and Decoders from Context-Free Grammars. 2017 IEEE Security and Privacy Workshops (SPW). :93–101.

Software systems nowadays communicate via a number of complex languages. This is often the cause of security vulnerabilities like arbitrary code execution, or injections. Whereby injections such as cross-site scripting are widely known from textual languages such as HTML and JSON that constantly gain more popularity. These systems use parsers to read input and unparsers write output, where these security vulnerabilities arise. Therefore correct parsing and unparsing of messages is of the utmost importance when developing secure and reliable systems. Part of the challenge developers face is to correctly encode data during unparsing and decode it during parsing. This paper presents McHammerCoder, an (un)parser and encoding generator supporting textual and binary languages. Those (un)parsers automatically apply the generated encoding, that is derived from the language's grammar. Therefore manually defining and applying encoding is not required to effectively prevent injections when using McHammerCoder. By specifying the communication language within a grammar, McHammerCoder provides developers with correct input and output handling code for their custom language.

2017-12-20
Rubin, S. H., Grefe, W. K., Bouabana-Tebibel, T., Chen, S. C., Shyu, M. L., Simonsen, K. S..  2017.  Cyber-Secure UAV Communications Using Heuristically Inferred Stochastic Grammars and Hard Real-Time Adaptive Waveform Synthesis and Evolution. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :9–15.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
2017-10-27
Agrafiotis, Ioannis, Erola, Arnau, Goldsmith, Michael, Creese, Sadie.  2016.  A Tripwire Grammar for Insider Threat Detection. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :105–108.
The threat from insiders is an ever-growing concern for organisations, and in recent years the harm that insiders pose has been widely demonstrated. This paper describes our recent work into how we might support insider threat detection when actions are taken which can be immediately determined as of concern because they fall into one of two categories: they violate a policy which is specifically crafted to describe behaviours that are highly likely to be of concern if they are exhibited, or they exhibit behaviours which follow a pattern of a known insider threat attack. In particular, we view these concerning actions as something that we can design and implement tripwires within a system to detect. We then orchestrate these tripwires in conjunction with an anomaly detection system and present an approach to formalising tripwires of both categories. Our intention being that by having a single framework for describing them, alongside a library of existing tripwires in use, we can provide the community of practitioners and researchers with the basis to document and evolve this common understanding of tripwires.
2017-08-22
Agrafiotis, Ioannis, Erola, Arnau, Goldsmith, Michael, Creese, Sadie.  2016.  A Tripwire Grammar for Insider Threat Detection. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :105–108.

The threat from insiders is an ever-growing concern for organisations, and in recent years the harm that insiders pose has been widely demonstrated. This paper describes our recent work into how we might support insider threat detection when actions are taken which can be immediately determined as of concern because they fall into one of two categories: they violate a policy which is specifically crafted to describe behaviours that are highly likely to be of concern if they are exhibited, or they exhibit behaviours which follow a pattern of a known insider threat attack. In particular, we view these concerning actions as something that we can design and implement tripwires within a system to detect. We then orchestrate these tripwires in conjunction with an anomaly detection system and present an approach to formalising tripwires of both categories. Our intention being that by having a single framework for describing them, alongside a library of existing tripwires in use, we can provide the community of practitioners and researchers with the basis to document and evolve this common understanding of tripwires.

2015-05-05
Han, Lansheng, Qian, Mengxiao, Xu, Xingbo, Fu, Cai, Kwisaba, Hamza.  2014.  Malicious code detection model based on behavior association. Tsinghua Science and Technology. 19:508-515.

Malicious applications can be introduced to attack users and services so as to gain financial rewards, individuals' sensitive information, company and government intellectual property, and to gain remote control of systems. However, traditional methods of malicious code detection, such as signature detection, behavior detection, virtual machine detection, and heuristic detection, have various weaknesses which make them unreliable. This paper presents the existing technologies of malicious code detection and a malicious code detection model is proposed based on behavior association. The behavior points of malicious code are first extracted through API monitoring technology and integrated into the behavior; then a relation between behaviors is established according to data dependence. Next, a behavior association model is built up and a discrimination method is put forth using pushdown automation. Finally, the exact malicious code is taken as a sample to carry out an experiment on the behavior's capture, association, and discrimination, thus proving that the theoretical model is viable.
 

2015-05-01
Achouri, A., Hlaoui, Y.B., Jemni Ben Ayed, L..  2014.  Institution Theory for Services Oriented Applications. Computer Software and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th International. :516-521.

In the present paper, we present our approach for the transformation of workflow applications based on institution theory. The workflow application is modeled with UML Activity Diagram(UML AD). Then, for a formal verification purposes, the graphical model will be translated to an Event-B specification. Institution theory will be used in two levels. First, we defined a local semantic for UML AD and Event B specification using a categorical description of each one. Second, we defined institution comorphism to link the two defined institutions. The theoretical foundations of our approach will be studied in the same mathematical framework since the use of institution theory. The resulted Event-B specification, after applying the transformation approach, will be used for the formal verification of functional proprieties and the verification of absences of problems such deadlock. Additionally, with the institution comorphism, we define a semantic correctness and coherence of the model transformation.

2015-04-30
Han, Lansheng, Qian, Mengxiao, Xu, Xingbo, Fu, Cai, Kwisaba, Hamza.  2014.  Malicious code detection model based on behavior association. Tsinghua Science and Technology. 19:508-515.

Malicious applications can be introduced to attack users and services so as to gain financial rewards, individuals' sensitive information, company and government intellectual property, and to gain remote control of systems. However, traditional methods of malicious code detection, such as signature detection, behavior detection, virtual machine detection, and heuristic detection, have various weaknesses which make them unreliable. This paper presents the existing technologies of malicious code detection and a malicious code detection model is proposed based on behavior association. The behavior points of malicious code are first extracted through API monitoring technology and integrated into the behavior; then a relation between behaviors is established according to data dependence. Next, a behavior association model is built up and a discrimination method is put forth using pushdown automation. Finally, the exact malicious code is taken as a sample to carry out an experiment on the behavior's capture, association, and discrimination, thus proving that the theoretical model is viable.