Biblio
Filters: Keyword is critical components [Clear All Filters]
Behavioral Based Trust Metrics and the Smart Grid. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1490-1493.
.
2018. To ensure reliable and predictable service in the electrical grid it is important to gauge the level of trust present within critical components and substations. Although trust throughout a smart grid is temporal and dynamically varies according to measured states, it is possible to accurately formulate communications and service level strategies based on such trust measurements. Utilizing an effective set of machine learning and statistical methods, it is shown that establishment of trust levels between substations using behavioral pattern analysis is possible. It is also shown that the establishment of such trust can facilitate simple secure communications routing between substations.
Study of secure boot with a FPGA-based IoT device. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :1053–1056.
.
2017. Internet of Things (loT) is network connected “Things” such as vehicles, buildings, embedded systems, sensors, as well as people. IoT enables these objects to collect and exchange data of interest to complete various tasks including patient health monitoring, environmental monitoring, system condition prognostics and prediction, smart grid, smart buildings, smart cities, and do on. Due to the large scale of and the limited host processor computation power in an IoT system, effective security provisioning is shifting from software-based security implementation to hardware-based security implementation in terms of efficiency and effectiveness. Moreover, FPGA can take over the work of infrastructure components to preserve and protect critical components and minimize the negative impacts on these components. In this paper, we employ Xilinx Zynq-7000 Series System-on-Chip (SoC) ZC706 prototype board to design an IoT device. To defend against threats to FPGA design, we have studied Zynq-ZC706 to (1) encrypt FPGA bitstream to protect the IoT device from bitstream decoding; (2) encrypt system boot image to enhance system security; and (3) ensure the FPGA operates correctly as intended via authentication to avoid spoofing and Trojan Horse attacks.