Biblio
This paper studies the deletion propagation problem in terms of minimizing view side-effect. It is a problem funda-mental to data lineage and quality management which could be a key step in analyzing view propagation and repairing data. The investigated problem is a variant of the standard deletion propagation problem, where given a source database D, a set of key preserving conjunctive queries Q, and the set of views V obtained by the queries in Q, we try to identify a set T of tuples from D whose elimination prevents all the tuples in a given set of deletions on views △V while preserving any other results. The complexity of this problem has been well studied for the case with only a single query. Dichotomies, even trichotomies, for different settings are developed. However, no results on multiple queries are given which is a more realistic case. We study the complexity and approximations of optimizing the side-effect on the views, i.e., find T to minimize the additional damage on V after removing all the tuples of △V. We focus on the class of key-preserving conjunctive queries which is a dichotomy for the single query case. It is surprising to find that except the single query case, this problem is NP-hard to approximate within any constant even for a non-trivial set of multiple project-free conjunctive queries in terms of view side-effect. The proposed algorithm shows that it can be approximated within a bound depending on the number of tuples of both V and △V. We identify a class of polynomial tractable inputs, and provide a dynamic programming algorithm to solve the problem. Besides data lineage, study on this problem could also provide important foundations for the computational issues in data repairing. Furthermore, we introduce some related applications of this problem, especially for query feedback based data cleaning.
One of the challenges in supplying the communities with wider access to scientific databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it might not be practical to make the public aware of the structure of databases. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide a more intuitive method for generating database queries and delivering responses. Through social media, which makes it possible to interact with a wide section of the population, and with the help of natural language processing, researchers at the Atmospheric Radiation Measurement (ARM) Data Center at Oak Ridge National Laboratory (ORNL) have developed a concept to enable easy search and retrieval of data from several environmental data centers for the scientific community through social media.Using a machine learning framework that maps natural language text to thousands of datasets, instruments, variables, and data streams, the prototype system would allow users to request data through Twitter and receive a link (via tweet) to applicable data results on the project's search catalog tailored to their key words. This automated identification of relevant data from various petascale archives at ORNL could increase convenience, access, and use of the project's data by the broader community. In this paper we discuss how some data-intensive projects at ORNL are using innovative ways to help in data discovery.
This paper present an approach to automate the conversion of Natural Language Query to SQL Query effectively. Structured Query Language is a powerful tool for managing data held in a relational database management system. To retrieve or manage data user have to enter the correct SQL Query. But the users who don't have any knowledge about SQL are unable to retrieve the required data. To overcome this we proposed a model in Natural Language Processing for converting the Natural Language Query to SQL query. This helps novice user to get required content without knowing any complex details about SQL. This system can also deal with complex queries. This system is designed for Training and Placement cell officers who work on student database but don't have any knowledge about SQL. In this system, user can also enter the query using speech. System will convert speech into the text format. This query will get transformed to SQL query. System will execute the query and gives output to the user.