Biblio
Today's rapid progress in the physical implementation of quantum computers demands scalable synthesis methods to map practical logic designs to quantum architectures. There exist many quantum algorithms which use classical functions with superposition of states. Motivated by recent trends, in this paper, we show the design of quantum circuit to perform modular exponentiation functions using two different approaches. In the design phase, first we generate quantum circuit from a verilog implementation of exponentiation functions using synthesis tools and then apply two different Quantum Error Correction techniques. Finally the circuit is further optimized using the Linear Nearest Neighbor (LNN) Property. We demonstrate the effectiveness of our approach by generating a set of networks for the reversible modular exponentiation function for a set of input values. At the end of the work, we have summarized the obtained results, where a cost analysis over our developed approaches has been made. Experimental results show that depending on the choice of different QECC methods the performance figures can vary by up to 11%, 10%, 8% in T-count, number of qubits, number of gates respectively.
With the growth of technology, designs became more complex and may contain bugs. This makes verification an indispensable part in product development. UVM describe a standard method for verification of designs which is reusable and portable. This paper verifies IIC bus protocol using Universal Verification Methodology. IIC controller is designed in Verilog using Vivado. It have APB interface and its function and code coverage is carried out in Mentor graphic Questasim 10.4e. This work achieved 83.87% code coverage and 91.11% functional coverage.
Untrusted third-party vendors and manufacturers have raised security concerns in hardware supply chain. Among all existing solutions, formal verification methods provide powerful solutions in detection malicious behaviors at the pre-silicon stage. However, little work have been done towards built-in hardware runtime verification at the post-silicon stage. In this paper, a runtime formal verification framework is proposed to evaluate the trust of hardware during its execution. This framework combines the symbolic execution and SAT solving methods to validate the user defined properties. The proposed framework has been demonstrated on an FPGA platform using an SoC design with untrusted IPs. The experimentation results show that the proposed approach can provide high-level security assurance for hardware at runtime.
Due to the proliferation of reprogrammable hardware, core designs built from modules drawn from a variety of sources execute with direct access to critical system resources. Expressing guarantees that such modules satisfy, in particular the dynamic conditions under which they release information about their unbounded streams of inputs, and automatically proving that they satisfy such guarantees, is an open and critical problem.,,To address these challenges, we propose a domain-specific language, named STREAMS, for expressing information-flow policies with declassification over unbounded input streams. We also introduce a novel algorithm, named SIMAREL, that given a core design C and STREAMS policy P, automatically proves or falsifies that C satisfies P. The key technical insight behind the design of SIMAREL is a novel algorithm for efficiently synthesizing relational invariants over pairs of circuit executions.,,We expressed expected behavior of cores designed independently for research and production as STREAMS policies and used SIMAREL to check if each core satisfies its policy. SIMAREL proved that half of the cores satisfied expected behavior, but found unexpected information leaks in six open-source designs: an Ethernet controller, a flash memory controller, an SD-card storage manager, a robotics controller, a digital-signal processing (DSP) module, and a debugging interface.