Biblio
Untrusted third-party vendors and manufacturers have raised security concerns in hardware supply chain. Among all existing solutions, formal verification methods provide powerful solutions in detection malicious behaviors at the pre-silicon stage. However, little work have been done towards built-in hardware runtime verification at the post-silicon stage. In this paper, a runtime formal verification framework is proposed to evaluate the trust of hardware during its execution. This framework combines the symbolic execution and SAT solving methods to validate the user defined properties. The proposed framework has been demonstrated on an FPGA platform using an SoC design with untrusted IPs. The experimentation results show that the proposed approach can provide high-level security assurance for hardware at runtime.
The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.