Visible to the public Biblio

Filters: Keyword is nearest neighbor search algorithm  [Clear All Filters]
2020-05-22
Ito, Toshitaka, Itotani, Yuri, Wakabayashi, Shin'ichi, Nagayama, Shinobu, Inagi, Masato.  2018.  A Nearest Neighbor Search Engine Using Distance-Based Hashing. 2018 International Conference on Field-Programmable Technology (FPT). :150—157.
This paper proposes an FPGA-based nearest neighbor search engine for high-dimensional data, in which nearest neighbor search is performed based on distance-based hashing. The proposed hardware search engine implements a nearest neighbor search algorithm based on an extension of flexible distance-based hashing (FDH, for short), which finds an exact solution with high probability. The proposed engine is a parallel processing and pipelined circuit so that search results can be obtained in a short execution time. Experimental results show the effectiveness and efficiency of the proposed engine.
Wang, Xi, Yao, Jun, Ji, Hongxia, Zhang, Ze, Li, Chen, Ma, Beizhi.  2018.  A Local Integral Hash Nearest Neighbor Algorithm. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :544—548.

Nearest neighbor search algorithm plays a very important role in computer image algorithm. When the search data is large, we need to use fast search algorithm. The current fast retrieval algorithms are tree based algorithms. The efficiency of the tree algorithm decreases sharply with the increase of the data dimension. In this paper, a local integral hash nearest neighbor algorithm of the spatial space is proposed to construct the tree structure by changing the way of the node of the access tree. It is able to express data distribution characteristics. After experimental testing, this paper achieves more efficient performance in high dimensional data.

2018-06-11
Yang, C., Li, Z., Qu, W., Liu, Z., Qi, H..  2017.  Grid-Based Indexing and Search Algorithms for Large-Scale and High-Dimensional Data. 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks 2017 11th International Conference on Frontier of Computer Science and Technology 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC). :46–51.

The rapid development of Internet has resulted in massive information overloading recently. These information is usually represented by high-dimensional feature vectors in many related applications such as recognition, classification and retrieval. These applications usually need efficient indexing and search methods for such large-scale and high-dimensional database, which typically is a challenging task. Some efforts have been made and solved this problem to some extent. However, most of them are implemented in a single machine, which is not suitable to handle large-scale database.In this paper, we present a novel data index structure and nearest neighbor search algorithm implemented on Apache Spark. We impose a grid on the database and index data by non-empty grid cells. This grid-based index structure is simple and easy to be implemented in parallel. Moreover, we propose to build a scalable KNN graph on the grids, which increase the efficiency of this index structure by a low cost in parallel implementation. Finally, experiments are conducted in both public databases and synthetic databases, showing that the proposed methods achieve overall high performance in both efficiency and accuracy.