Visible to the public Biblio

Found 164 results

Filters: Keyword is Artificial neural networks  [Clear All Filters]
2023-09-20
He, Zhenghao.  2022.  Comparison Of Different Machine Learning Methods Applied To Obesity Classification. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). :467—472.
Estimation for obesity levels is always an important topic in medical field since it can provide useful guidance for people that would like to lose weight or keep fit. The article tries to find a model that can predict obesity and provides people with the information of how to avoid overweight. To be more specific, this article applied dimension reduction to the data set to simplify the data and tried to Figure out a most decisive feature of obesity through Principal Component Analysis (PCA) based on the data set. The article also used some machine learning methods like Support Vector Machine (SVM), Decision Tree to do prediction of obesity and wanted to find the major reason of obesity. In addition, the article uses Artificial Neural Network (ANN) to do prediction which has more powerful feature extraction ability to do this. Finally, the article found that family history of obesity is the most decisive feature, and it may because of obesity may be greatly affected by genes or the family eating diet may have great influence. And both ANN and Decision tree’s accuracy of prediction is higher than 90%.
2023-04-28
Parhizgar, Nazanin, Jamshidi, Ali, Setoodeh, Peyman.  2022.  Defense Against Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks using Machine Learning. 2022 30th International Conference on Electrical Engineering (ICEE). :974–979.
Cognitive radio (CR) networks are an emerging and promising technology to improve the utilization of vacant bands. In CR networks, security is a very noteworthy domain. Two threatening attacks are primary user emulation (PUE) and spectrum sensing data falsification (SSDF). A PUE attacker mimics the primary user signals to deceive the legitimate secondary users. The SSDF attacker falsifies its observations to misguide the fusion center to make a wrong decision about the status of the primary user. In this paper, we propose a scheme based on clustering the secondary users to counter SSDF attacks. Our focus is on detecting and classifying each cluster as reliable or unreliable. We introduce two different methods using an artificial neural network (ANN) for both methods and five more classifiers such as support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), logistic regression (LR), and decision tree (DR) for the second one to achieve this goal. Moreover, we consider deterministic and stochastic scenarios with white Gaussian noise (WGN) for attack strategy. Results demonstrate that our method outperforms a recently suggested scheme.
2023-04-14
Wu, Min-Hao, Huang, Jian-Hung, Chen, Jian-Xin, Wang, Hao-Jyun, Chiu, Chen-Yu.  2022.  Machine Learning to Identify Bitcoin Mining by Web Browsers. 2022 2nd International Conference on Computation, Communication and Engineering (ICCCE). :66—69.
In the recent development of the online cryptocurrency mining platform, Coinhive, numerous websites have employed “Cryptojacking.” They may need the unauthorized use of CPU resources to mine cryptocurrency and replace advertising income. Web cryptojacking technologies are the most recent attack in information security. Security teams have suggested blocking Cryptojacking scripts by using a blacklist as a strategy. However, the updating procedure of the static blacklist has not been able to promptly safeguard consumers because of the sharp rise in “Cryptojacking kidnapping”. Therefore, we propose a Cryptojacking identification technique based on analyzing the user's computer resources to combat the assault technology known as “Cryptojacking kidnapping.” Machine learning techniques are used to monitor changes in computer resources such as CPU changes. The experiment results indicate that this method is more accurate than the blacklist system and, in contrast to the blacklist system, manually updates the blacklist regularly. The misuse of online Cryptojacking programs and the unlawful hijacking of users' machines for Cryptojacking are becoming worse. In the future, information security undoubtedly addresses the issue of how to prevent Cryptojacking and abduction. The result of this study helps to save individuals from unintentionally becoming miners.
2023-03-31
You, Jinliang, Zhang, Di, Gong, Qingwu, Zhu, Jiran, Tang, Haiguo, Deng, Wei, Kang, Tong.  2022.  Fault phase selection method of distribution network based on wavelet singular entropy and DBN. 2022 China International Conference on Electricity Distribution (CICED). :1742–1747.
The selection of distribution network faults is of great significance to accurately identify the fault location, quickly restore power and improve the reliability of power supply. This paper mainly studies the fault phase selection method of distribution network based on wavelet singular entropy and deep belief network (DBN). Firstly, the basic principles of wavelet singular entropy and DBN are analyzed, and on this basis, the DBN model of distribution network fault phase selection is proposed. Firstly, the transient fault current data of the distribution network is processed to obtain the wavelet singular entropy of the three phases, which is used as the input of the fault phase selection model; then the DBN network is improved, and an artificial neural network (ANN) is introduced to make it a fault Select the phase classifier, and specify the output label; finally, use Simulink to build a simulation model of the IEEE33 node distribution network system, obtain a large amount of data of various fault types, generate a training sample library and a test sample library, and analyze the neural network. The adjustment of the structure and the training of the parameters complete the construction of the DBN model for the fault phase selection of the distribution network.
ISSN: 2161-749X
2023-03-17
Masum, Mohammad, Hossain Faruk, Md Jobair, Shahriar, Hossain, Qian, Kai, Lo, Dan, Adnan, Muhaiminul Islam.  2022.  Ransomware Classification and Detection With Machine Learning Algorithms. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0316–0322.
Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.
2023-02-17
Svadasu, Grandhi, Adimoolam, M..  2022.  Spam Detection in Social Media using Artificial Neural Network Algorithm and comparing Accuracy with Support Vector Machine Algorithm. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–5.
Aim: To bring off the spam detection in social media using Support Vector Machine (SVM) algorithm and compare accuracy with Artificial Neural Network (ANN) algorithm sample size of dataset is 5489, Initially the dataset contains several messages which includes spam and ham messages 80% messages are taken as training and 20% of messages are taken as testing. Materials and Methods: Classification was performed by KNN algorithm (N=10) for spam detection in social media and the accuracy was compared with SVM algorithm (N=10) with G power 80% and alpha value 0.05. Results: The value obtained in terms of accuracy was identified by ANN algorithm (98.2%) and for SVM algorithm (96.2%) with significant value 0.749. Conclusion: The accuracy of detecting spam using the ANN algorithm appears to be slightly better than the SVM algorithm.
Luo, Zhengwu, Wang, Lina, Wang, Run, Yang, Kang, Ye, Aoshuang.  2022.  Improving Robustness Verification of Neural Networks with General Activation Functions via Branching and Optimization. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Robustness verification of neural networks (NNs) is a challenging and significant problem, which draws great attention in recent years. Existing researches have shown that bound propagation is a scalable and effective method for robustness verification, and it can be implemented on GPUs and TPUs to get parallelized. However, the bound propagation methods naturally produce weak bound due to linear relaxations on the neurons, which may cause failure in verification. Although tightening techniques for simple ReLU networks have been explored, they are not applicable for NNs with general activation functions such as Sigmoid and Tanh. Improving robustness verification on these NNs is still challenging. In this paper, we propose a Branch-and-Bound (BaB) style method to address this problem. The proposed BaB procedure improves the weak bound by splitting the input domain of neurons into sub-domains and solving the corresponding sub-problems. We propose a generic heuristic function to determine the priority of neuron splitting by scoring the relaxation and impact of neurons. Moreover, we combine bound optimization with the BaB procedure to improve the weak bound. Experimental results demonstrate that the proposed method gains up to 35% improvement compared to the state-of-art CROWN method on Sigmoid and Tanh networks.
ISSN: 2161-4407
2023-01-06
Ham, MyungJoo, Woo, Sangjung, Jung, Jaeyun, Song, Wook, Jang, Gichan, Ahn, Yongjoo, Ahn, Hyoungjoo.  2022.  Toward Among-Device AI from On-Device AI with Stream Pipelines. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :285—294.
Modern consumer electronic devices often provide intelligence services with deep neural networks. We have started migrating the computing locations of intelligence services from cloud servers (traditional AI systems) to the corresponding devices (on-device AI systems). On-device AI systems generally have the advantages of preserving privacy, removing network latency, and saving cloud costs. With the emergence of on-device AI systems having relatively low computing power, the inconsistent and varying hardware resources and capabilities pose difficulties. Authors' affiliation has started applying a stream pipeline framework, NNStreamer, for on-device AI systems, saving developmental costs and hardware resources and improving performance. We want to expand the types of devices and applications with on-device AI services products of both the affiliation and second/third parties. We also want to make each AI service atomic, re-deployable, and shared among connected devices of arbitrary vendors; we now have yet another requirement introduced as it always has been. The new requirement of “among-device AI” includes connectivity between AI pipelines so that they may share computing resources and hardware capabilities across a wide range of devices regardless of vendors and manufacturers. We propose extensions of the stream pipeline framework, NNStreamer, for on-device AI so that NNStreamer may provide among-device AI capability. This work is a Linux Foundation (LF AI & Data) open source project accepting contributions from the general public.
2022-12-09
Feng, Li, Bo, Ye.  2022.  Intelligent fault diagnosis technology of power transformer based on Artificial Intelligence. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1968—1971.
Transformer is the key equipment of power system, and its stable operation is very important to the security of power system In practical application, with the progress of technology, the performance of transformer becomes more and more important, but faults also occur from time to time in practical application, and the traditional manual fault diagnosis needs to consume a lot of time and energy. At present, the rapid development of artificial intelligence technology provides a new research direction for timely and accurate detection and treatment of transformer faults. In this paper, a method of transformer fault diagnosis using artificial neural network is proposed. The neural network algorithm is used for off-line learning and training of the operation state data of normal and fault states. By adjusting the relationship between neuron nodes, the mapping relationship between fault characteristics and fault location is established by using network layer learning, Finally, the reasoning process from fault feature to fault location is realized to realize intelligent fault diagnosis.
2022-11-25
Tadeo, Diego Antonio García, John, S.Franklin, Bhaumik, Ankan, Neware, Rahul, Yamsani, Nagendar, Kapila, Dhiraj.  2021.  Empirical Analysis of Security Enabled Cloud Computing Strategy Using Artificial Intelligence. 2021 International Conference on Computing Sciences (ICCS). :83—85.
Cloud Computing (CC) has emerged as an on-demand accessible tool in different practical applications such as digital industry, academics, manufacturing, health sector and others. In this paper different security threats faced by CC are discussed with suitable examples. Moreover, an artificial intelligence based security enabled CC is also discussed based on suitable empirical data. It is found that an artificial neural network (ANN) is an effective system to detect the level of risk factors associated with CC along with mitigating those risk issues with appropriate algorithms. Hence, it provides a desired level of protection against cyber attacks, internal confidential threats and external threat of data theft from a cloud computing system. Levenberg–Marquardt (LMBP) algorithms are also found as a significant tool to estimate the level of security performance around a cloud computing system. ANN is used to improve the performance level of data security across a cloud computing network and make it security enabled to ensure a protected data transmission to clients associated with the system.
2022-10-20
Larsen, Raphaël M.J.I., Pahl, Marc-Oliver, Coatrieux, Gouenou.  2021.  Authenticating IDS autoencoders using multipath neural networks. 2021 5th Cyber Security in Networking Conference (CSNet). :1—9.
An Intrusion Detection System (IDS) is a core element for securing critical systems. An IDS can use signatures of known attacks, or an anomaly detection model for detecting unknown attacks. Attacking an IDS is often the entry point of an attack against a critical system. Consequently, the security of IDSs themselves is imperative. To secure model-based IDSs, we propose a method to authenticate the anomaly detection model. The anomaly detection model is an autoencoder for which we only have access to input-output pairs. Inputs consist of time windows of values from sensors and actuators of an Industrial Control System. Our method is based on a multipath Neural Network (NN) classifier, a newly proposed deep learning technique. The idea is to characterize errors of an IDS's autoencoder by using a multipath NN's confidence measure \$c\$. We use the Wilcoxon-Mann-Whitney (WMW) test to detect a change in the distribution of the summary variable \$c\$, indicating that the autoencoder is not working properly. We compare our method to two baselines. They consist in using other summary variables for the WMW test. We assess the performance of these three methods using simulated data. Among others, our analysis shows that: 1) both baselines are oblivious to some autoencoder spoofing attacks while 2) the WMW test on a multipath NN's confidence measure enables detecting eventually any autoencoder spoofing attack.
2022-09-09
Khan, Aazar Imran, Jain, Samyak, Sharma, Purushottam, Deep, Vikas, Mehrotra, Deepti.  2021.  Stylometric Analysis of Writing Patterns Using Artificial Neural Networks. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :29—35.
Plagiarism checkers have been widely used to verify the authenticity of dissertation/project submissions. However, when non-verbatim plagiarism or online examinations are considered, this practice is not the best solution. In this work, we propose a better authentication system for online examinations that analyses the submitted text's stylometry for a match of writing pattern of the author by whom the text was submitted. The writing pattern is analyzed over many indicators (i.e., features of one's writing style). This model extracts 27 such features and stores them as the writing pattern of an individual. Stylometric Analysis is a better approach to verify a document's authorship as it doesn't check for plagiarism, but verifies if the document was written by a particular individual and hence completely shuts down the possibility of using text-convertors or translators. This paper also includes a brief comparative analysis of some simpler algorithms for the same problem statement. These algorithms yield results that vary in precision and accuracy and hence plotting a conclusion from the comparison shows that the best bet to tackle this problem is through Artificial Neural Networks.
2022-08-10
Simsek, Ozlem Imik, Alagoz, Baris Baykant.  2021.  A Computational Intelligent Analysis Scheme for Optimal Engine Behavior by Using Artificial Neural Network Learning Models and Harris Hawk Optimization. 2021 International Conference on Information Technology (ICIT). :361—365.
Application of computational intelligence methods in data analysis and optimization problems can allow feasible and optimal solutions of complicated engineering problems. This study demonstrates an intelligent analysis scheme for determination of optimal operating condition of an internal combustion engine. For this purpose, an artificial neural network learning model is used to represent engine behavior based on engine data, and a metaheuristic optimization method is implemented to figure out optimal operating states of the engine according to the neural network learning model. This data analysis scheme is used for adjustment of optimal engine speed and fuel rate parameters to provide a maximum torque under Nitrous oxide emission constraint. Harris hawks optimization method is implemented to solve the proposed optimization problem. The solution of this optimization problem addresses eco-friendly enhancement of vehicle performance. Results indicate that this computational intelligent analysis scheme can find optimal operating regimes of an engine.
2022-07-29
Tartaglione, Enzo, Grangetto, Marco, Cavagnino, Davide, Botta, Marco.  2021.  Delving in the loss landscape to embed robust watermarks into neural networks. 2020 25th International Conference on Pattern Recognition (ICPR). :1243—1250.
In the last decade the use of artificial neural networks (ANNs) in many fields like image processing or speech recognition has become a common practice because of their effectiveness to solve complex tasks. However, in such a rush, very little attention has been paid to security aspects. In this work we explore the possibility to embed a watermark into the ANN parameters. We exploit model redundancy and adaptation capacity to lock a subset of its parameters to carry the watermark sequence. The watermark can be extracted in a simple way to claim copyright on models but can be very easily attacked with model fine-tuning. To tackle this culprit we devise a novel watermark aware training strategy. We aim at delving into the loss landscape to find an optimal configuration of the parameters such that we are robust to fine-tuning attacks towards the watermarked parameters. Our experimental results on classical ANN models trained on well-known MNIST and CIFAR-10 datasets show that the proposed approach makes the embedded watermark robust to fine-tuning and compression attacks.
2022-07-13
Liu, Xian.  2021.  A Primitive Cipher with Machine Learning. 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1—6.
Multi-access edge computing (MEC) equipped with artificial intelligence is a promising technology in B5G wireless systems. Due to outsourcing and other transactions, some primitive security modules need to be introduced. In this paper, we design a primitive cipher based on double discrete exponentiation and double discrete logarithm. The machine learning methodology is incorporated in the development. Several interesting results are obtained. It reveals that the number of key-rounds is critically important.
2022-07-12
Mbanaso, U. M., Makinde, J. A..  2021.  Conceptual Modelling of Criticality of Critical Infrastructure Nth Order Dependency Effect Using Neural Networks. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA). :127—131.
This paper presents conceptual modelling of the criticality of critical infrastructure (CI) nth order dependency effect using neural networks. Incidentally, critical infrastructures are usually not stand-alone, they are mostly interconnected in some way thereby creating a complex network of infrastructures that depend on each other. The relationships between these infrastructures can be either unidirectional or bidirectional with possible cascading or escalating effect. Moreover, the dependency relationships can take an nth order, meaning that a failure or disruption in one infrastructure can cascade to nth interconnected infrastructure. The nth-order dependency and criticality problems depict a sequential characteristic, which can result in chronological cyber effects. Consequently, quantifying the criticality of infrastructure demands that the impact of its failure or disruption on other interconnected infrastructures be measured effectively. To understand the complex relational behaviour of nth order relationships between infrastructures, we model the behaviour of nth order dependency using Neural Network (NN) to analyse the degree of dependency and criticality of the dependent infrastructure. The outcome, which is to quantify the Criticality Index Factor (CIF) of a particular infrastructure as a measure of its risk factor can facilitate a collective response in the event of failure or disruption. Using our novel NN approach, a comparative view of CIFs of infrastructures or organisations can provide an efficient mechanism for Critical Information Infrastructure Protection and resilience (CIIPR) in a more coordinated and harmonised way nationally. Our model demonstrates the capability to measure and establish the degree of dependency (or interdependency) and criticality of CIs as a criterion for a proactive CIIPR.
ERÇİN, Mehmet Serhan, YOLAÇAN, Esra Nergis.  2021.  A system for redicting SQLi and XSS Attacks. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :155—160.
In this study, it is aimed to reduce False-Alarm levels and increase the correct detection rate in order to reduce this uncertainty. Within the scope of the study, 13157 SQLi and XSS type malicious and 10000 normal HTTP Requests were used. All HTTP requests were received from the same web server, and it was observed that normal requests and malicious requests were close to each other. In this study, a novel approach is presented via both digitization and expressing the data with words in the data preprocessing stages. LSTM, MLP, CNN, GNB, SVM, KNN, DT, RF algorithms were used for classification and the results were evaluated with accuracy, precision, recall and F1-score metrics. As a contribution of this study, we can clearly express the following inferences. Each payload even if it seems different which has the same impact maybe that we can clearly view after the preprocessing phase. After preprocessing we are calculating euclidean distances which brings and gives us the relativity between expressions. When we put this relativity as an entry data to machine learning and/or deep learning models, perhaps we can understand the benign request or the attack vector difference.
2022-07-01
Manoj, B. R., Sadeghi, Meysam, Larsson, Erik G..  2021.  Adversarial Attacks on Deep Learning Based Power Allocation in a Massive MIMO Network. ICC 2021 - IEEE International Conference on Communications. :1–6.
Deep learning (DL) is becoming popular as a new tool for many applications in wireless communication systems. However, for many classification tasks (e.g., modulation classification) it has been shown that DL-based wireless systems are susceptible to adversarial examples; adversarial examples are well-crafted malicious inputs to the neural network (NN) with the objective to cause erroneous outputs. In this paper, we extend this to regression problems and show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network. Specifically, we extend the fast gradient sign method (FGSM), momentum iterative FGSM, and projected gradient descent adversarial attacks in the context of power allocation in a maMIMO system. We benchmark the performance of these attacks and show that with a small perturbation in the input of the NN, the white-box attacks can result in infeasible solutions up to 86%. Furthermore, we investigate the performance of black-box attacks. All the evaluations conducted in this work are based on an open dataset and NN models, which are publicly available.
2022-05-05
Huong, Truong Thu, Bac, Ta Phuong, Long, Dao Minh, Thang, Bui Doan, Luong, Tran Duc, Binh, Nguyen Thanh.  2021.  An Efficient Low Complexity Edge-Cloud Framework for Security in IoT Networks. 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :533—539.

Internet of Things (IoT) and its applications are becoming commonplace with more devices, but always at risk of network security. It is therefore crucial for an IoT network design to identify attackers accurately, quickly and promptly. Many solutions have been proposed, mainly concerning secure IoT architectures and classification algorithms, but none of them have paid enough attention to reducing the complexity. Our proposal in this paper is an edge-cloud architecture that fulfills the detection task right at the edge layer, near the source of the attacks for quick response, versatility, as well as reducing the cloud's workload. We also propose a multi-attack detection mechanism called LCHA (Low-Complexity detection solution with High Accuracy) , which has low complexity for deployment at the edge zone while still maintaining high accuracy. The performance of our proposed mechanism is compared with that of other machine learning and deep learning methods using the most updated BoT-IoT data set. The results show that LCHA outperforms other algorithms such as NN, CNN, RNN, KNN, SVM, KNN, RF and Decision Tree in terms of accuracy and NN in terms of complexity.

2022-04-13
Dalvi, Jai, Sharma, Vyomesh, Shetty, Ruchika, Kulkarni, Sujata.  2021.  DDoS Attack Detection using Artificial Neural Network. 2021 International Conference on Industrial Electronics Research and Applications (ICIERA). :1—5.
Distributed denial of service (DDoS) attacks is one of the most evolving threats in the current Internet situation and yet there is no effective mechanism to curb it. In the field of DDoS attacks, as in all other areas of cybersecurity, attackers are increasingly using sophisticated methods. The work in this paper focuses on using Artificial Neural Network to detect various types of DDOS attacks(UDP-Flood, Smurf, HTTP-Flood and SiDDoS). We would be mainly focusing on the network and transport layer DDoS attacks. Additionally, the time and space complexity is also calculated to further improve the efficiency of the model implemented and overcome the limitations found in the research gap. The results obtained from our analysis on the dataset show that our proposed methods can better detect the DDoS attack.
Bernardi, Simona, Javierre, Raúl, Merseguer, José, Requeno, José Ignacio.  2021.  Detectors of Smart Grid Integrity Attacks: an Experimental Assessment. 2021 17th European Dependable Computing Conference (EDCC). :75–82.
Today cyber-attacks to critical infrastructures can perform outages, economical loss, physical damage to people and the environment, among many others. In particular, the smart grid is one of the main targets. In this paper, we develop and evaluate software detectors for integrity attacks to smart meter readings. The detectors rely upon different techniques and models, such as autoregressive models, clustering, and neural networks. Our evaluation considers different “attack scenarios”, then resembling the plethora of attacks found in last years. Starting from previous works in the literature, we carry out a detailed experimentation and analysis, so to identify which “detectors” best fit for each “attack scenario”. Our results contradict some findings of previous works and also offer a light for choosing the techniques that can address best the attacks to smart meters.
2022-03-15
Cristescu, Mihai-Corneliu, Bob, Cristian.  2021.  Flexible Framework for Stimuli Redundancy Reduction in Functional Verification Using Artificial Neural Networks. 2021 International Symposium on Signals, Circuits and Systems (ISSCS). :1—4.
Within the ASIC development process, the phase of functional verification is a major bottleneck that affects the product time to market. A technique that decreases the time cost for reaching functional coverage closure is reducing the stimuli redundancy during the test regressions. This paper addresses such a solution and presents a novel, efficient, and scalable implementation that harnesses the power of artificial neural networks. This article outlines the concept strategy, highlights the framework structure, lists the experimental results, and underlines future research directions.
2022-03-14
Aldossary, Lina Abdulaziz, Ali, Mazen, Alasaadi, Abdulla.  2021.  Securing SCADA Systems against Cyber-Attacks using Artificial Intelligence. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :739—745.
Monitoring and managing electric power generation, distribution and transmission requires supervisory control and data acquisition (SCADA) systems. As technology has developed, these systems have become huge, complicated, and distributed, which makes them susceptible to new risks. In particular, the lack of security in SCADA systems make them a target for network attacks such as denial of service (DoS) and developing solutions for this issue is the main objective of this thesis. By reviewing various existing system solutions for securing SCADA systems, a new security approach is recommended that employs Artificial Intelligence(AI). AI is an innovative approach that imparts learning ability to software. Here deep learning algorithms and machine learning algorithms are used to develop an intrusion detection system (IDS) to combat cyber-attacks. Various methods and algorithms are evaluated to obtain the best results in intrusion detection. The results reveal the Bi-LSTM IDS technique provides the highest intrusion detection (ID) performance compared with previous techniques to secure SCADA systems
2022-03-08
Kim, Won-Jae, Kim, Sang-Hoon.  2021.  Multiple Open-Switch Fault Diagnosis Using ANNs for Three-Phase PWM Converters. 2021 24th International Conference on Electrical Machines and Systems (ICEMS). :2436–2439.
In this paper, a multiple switches open-fault diagnostic method using ANNs (Artificial Neural Networks) for three-phase PWM (Pulse Width Modulation) converters is proposed. When an open-fault occurs on switches in the converter, the stator currents can include dc and harmonic components. Since these abnormal currents cannot be easily cut off by protection circuits, secondary faults can occur in peripherals. Therefore, a method of diagnosing the open-fault is required. For open-faults for single switch and double switches, there are 21 types of fault modes depending on faulty switches. In this paper, these fault modes are localized by using the dc component and THD (Total Harmonics Distortion) in fault currents. For obtaining the dc component and THD in the currents, an ADALINE (Adaptive Linear Neuron) is used. For localizing fault modes, two ANNs are used in series; the 21 fault modes are categorized into six sectors by the first ANN of using the dc components, and then the second ANN localizes fault modes by using both the dc and THDs of the d-q axes current in each sector. Simulations and experiments confirm the validity of the proposed method.
2022-03-02
Liu, Yongchao, Zhu, Qidan.  2021.  Adaptive Neural Network Asymptotic Tracking for Nonstrict-Feedback Switched Nonlinear Systems. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :25–30.
This paper develops an adaptive neural network (NN) asymptotic tracking control scheme for nonstrict-feedback switched nonlinear systems with unknown nonlinearities. The NNs are used to dispose the unknown nonlinearities. Different from the published results, the asymptotic convergence character is achieved based on the bound estimation method. By combining some smooth functions with the adaptive backstepping scheme, the asymptotic tracking control strategy is presented. It is proved that the fabricated scheme can guarantee that the system output can asymptotically follow the desired signal, and also that all signals of the entire system are bounded. The validity of the devised scheme is evaluated by a simulation example.