Visible to the public Biblio

Found 164 results

Filters: Keyword is Artificial neural networks  [Clear All Filters]
2018-06-07
Alazzawe, A., Kant, K..  2017.  Slice Swarms for HPC Application Resilience. 2017 Fifth International Symposium on Computing and Networking (CANDAR). :1–10.

Resilience in High Performance Computing (HPC) is a constraining factor for bringing applications to the upcoming exascale systems. Resilience techniques must be able to scale to handle the increasing number of expected errors in an energy efficient manner. Since the purpose of running applications on HPC systems is to perform large scale computations as quick as possible, resilience methods should not add a large delay to the time to completion of the application. In this paper we introduce a novel technique to detect and recover from transient errors in HPC applications. One of the features of our technique is that the energy budget allocated to resilience can be adjusted depending on the operator's resilience needs. For example, on synthetic data, the technique can detect about 50% of transient errors while only using 20% of the dynamic energy required for running the application. For a 60% energy budget, an application that uses 10k cores and takes 128 hours to run, will only require 10% longer to complete.

Tirumala, Sreenivas Sremath, Narayanan, Ajit.  2017.  Transpositional Neurocryptography Using Deep Learning. Proceedings of the 2017 International Conference on Information Technology. :330–334.

Cryptanalysis (the study of methods to read encrypted information without knowledge of the encryption key) has traditionally been separated into mathematical analysis of weaknesses in cryptographic algorithms, on the one hand, and side-channel attacks which aim to exploit weaknesses in the implementation of encryption and decryption algorithms. Mathematical analysis generally makes assumptions about the algorithm with the aim of reconstructing the key relating plain text to cipher text through brute-force methods. Complexity issues tend to dominate the systematic search for keys. To date, there has been very little research on a third cryptanalysis method: learning the key through convergence based on associations between plain text and cipher text. Recent advances in deep learning using multi-layered artificial neural networks (ANNs) provide an opportunity to reassess the role of deep learning architectures in next generation cryptanalysis methods based on neurocryptography (NC). In this paper, we explore the capability of deep ANNs to decrypt encrypted messages with minimum knowledge of the algorithm. From the experimental results, it can be concluded that DNNs can encrypt and decrypt to levels of accuracy that are not 100% because of the stochastic aspects of ANNs. This aspect may however be useful if communication is under cryptanalysis attack, since the attacker will not know for certain that key K used for encryption and decryption has been found. Also, uncertainty concerning the architecture used for encryption and decryption adds another layer of uncertainty that has no counterpart in traditional cryptanalysis.

Ahmadon, M. A. B., Yamaguchi, S., Saon, S., Mahamad, A. K..  2017.  On service security analysis for event log of IoT system based on data Petri net. 2017 IEEE International Symposium on Consumer Electronics (ISCE). :4–8.

The Internet of Things (IoT) has bridged our physical world to the cyber world which allows us to achieve our desired lifestyle. However, service security is an essential part to ensure that the designed service is not compromised. In this paper, we proposed a security analysis for IoT services. We focus on the context of detecting malicious operation from an event log of the designed IoT services. We utilized Petri nets with data to model IoT service which is logically correct. Then, we check the trace from an event log by tracking the captured process and data. Finally, we illustrated the approach with a smart home service and showed the effectiveness of our approach.

2018-05-24
Hassan, M., Hamada, M..  2017.  A Computational Model for Improving the Accuracy of Multi-Criteria Recommender Systems. 2017 IEEE 11th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC). :114–119.

Artificial neural networks are complex biologically inspired algorithms made up of highly distributed, adaptive and self-organizing structures that make them suitable for optimization problems. They are made up of a group of interconnected nodes, similar to the great networks of neurons in the human brain. So far, artificial neural networks have not been applied to user modeling in multi-criteria recommender systems. This paper presents neural networks-based user modeling technique that exploits some of the characteristics of biological neurons for improving the accuracy of multi-criteria recommendations. The study was based upon the aggregation function approach that computes the overall rating as a function of the criteria ratings. The proposed technique was evaluated using different evaluation metrics, and the empirical results of the experiments were compared with that of the single rating-based collaborative filtering and two other similarity-based modeling approaches. The two similarity-based techniques used are: the worst-case and the average similarity techniques. The results of the comparative analysis have shown that the proposed technique is more efficient than the two similarity-based techniques and the single rating collaborative filtering technique.

2018-05-02
Shanthi, D., Mohanty, R. K., Narsimha, G., Aruna, V..  2017.  Application of partical swarm intelligence technique to predict software reliability. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). :629–635.

Predict software program reliability turns into a completely huge trouble in these days. Ordinary many new software programs are introducing inside the marketplace and some of them dealing with failures as their usage/managing is very hard. and plenty of shrewd strategies are already used to are expecting software program reliability. In this paper we're giving a sensible knowledge and the difference among those techniques with my new method. As a result, the prediction fashions constructed on one dataset display a extensive decrease in their accuracy when they are used with new statistics. The aim of this assessment, SE issues which can be of sensible importance are software development/cost estimation, software program reliability prediction, and so forth, and also computing its broaden computational equipment with enhanced power, scalability, flexibility and that can engage more successfully with human beings.

2018-04-04
Majumder, R., Som, S., Gupta, R..  2017.  Vulnerability prediction through self-learning model. 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). :400–402.

Vulnerability being the buzz word in the modern time is the most important jargon related to software and operating system. Since every now and then, software is developed some loopholes and incompleteness lie in the development phase, so there always remains a vulnerability of abruptness in it which can come into picture anytime. Detecting vulnerability is one thing and predicting its occurrence in the due course of time is another thing. If we get to know the vulnerability of any software in the due course of time then it acts as an active alarm for the developers to again develop sound and improvised software the second time. The proposal talks about the implementation of the idea using the artificial neural network, where different data sets are being given as input for being used for further analysis for successful results. As of now, there are models for studying the vulnerabilities in the software and networks, this paper proposal in addition to the current work, will throw light on the predictability of vulnerabilities over the due course of time.

2018-04-02
Ádám, Norbert, Madoš, Branislav, Baláž, Anton, Pavlik, Tomáš.  2017.  Artificial Neural Network Based IDS. 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI). :000159–000164.

The Network Intrusion Detection Systems (NIDS) are either signature based or anomaly based. In this paper presented NIDS system belongs to anomaly based Neural Network Intrusion Detection System (NNIDS). The proposed NNIDS is able to successfully recognize learned malicious activities in a network environment. It was tested for the SYN flood attack, UDP flood attack, nMap scanning attack, and also for non-malicious communication.

Al-Zewairi, M., Almajali, S., Awajan, A..  2017.  Experimental Evaluation of a Multi-Layer Feed-Forward Artificial Neural Network Classifier for Network Intrusion Detection System. 2017 International Conference on New Trends in Computing Sciences (ICTCS). :167–172.

Deep Learning has been proven more effective than conventional machine-learning algorithms in solving classification problem with high dimensionality and complex features, especially when trained with big data. In this paper, a deep learning binomial classifier for Network Intrusion Detection System is proposed and experimentally evaluated using the UNSW-NB15 dataset. Three different experiments were executed in order to determine the optimal activation function, then to select the most important features and finally to test the proposed model on unseen data. The evaluation results demonstrate that the proposed classifier outperforms other models in the literature with 98.99% accuracy and 0.56% false alarm rate on unseen data.

Yousefi-Azar, M., Varadharajan, V., Hamey, L., Tupakula, U..  2017.  Autoencoder-Based Feature Learning for Cyber Security Applications. 2017 International Joint Conference on Neural Networks (IJCNN). :3854–3861.

This paper presents a novel feature learning model for cyber security tasks. We propose to use Auto-encoders (AEs), as a generative model, to learn latent representation of different feature sets. We show how well the AE is capable of automatically learning a reasonable notion of semantic similarity among input features. Specifically, the AE accepts a feature vector, obtained from cyber security phenomena, and extracts a code vector that captures the semantic similarity between the feature vectors. This similarity is embedded in an abstract latent representation. Because the AE is trained in an unsupervised fashion, the main part of this success comes from appropriate original feature set that is used in this paper. It can also provide more discriminative features in contrast to other feature engineering approaches. Furthermore, the scheme can reduce the dimensionality of the features thereby signicantly minimising the memory requirements. We selected two different cyber security tasks: networkbased anomaly intrusion detection and Malware classication. We have analysed the proposed scheme with various classifiers using publicly available datasets for network anomaly intrusion detection and malware classifications. Several appropriate evaluation metrics show improvement compared to prior results.

Alom, M. Z., Taha, T. M..  2017.  Network Intrusion Detection for Cyber Security on Neuromorphic Computing System. 2017 International Joint Conference on Neural Networks (IJCNN). :3830–3837.

In the paper, we demonstrate a neuromorphic cognitive computing approach for Network Intrusion Detection System (IDS) for cyber security using Deep Learning (DL). The algorithmic power of DL has been merged with fast and extremely power efficient neuromorphic processors for cyber security. In this implementation, the data has been numerical encoded to train with un-supervised deep learning techniques called Auto Encoder (AE) in the training phase. The generated weights of AE are used as initial weights for the supervised training phase using neural networks. The final weights are converted to discrete values using Discrete Vector Factorization (DVF) for generating crossbar weight, synaptic weights, and thresholds for neurons. Finally, the generated crossbar weights, synaptic weights, threshold, and leak values are mapped to crossbars and neurons. In the testing phase, the encoded test samples are converted to spiking form by using hybrid encoding technique. The model has been deployed and tested on the IBM Neurosynaptic Core Simulator (NSCS) and on actual IBM TrueNorth neurosynaptic chip. The experimental results show around 90.12% accuracy for network intrusion detection for cyber security on the physical neuromorphic chip. Furthermore, we have investigated the proposed system not only for detection of malicious packets but also for classifying specific types of attacks and achieved 81.31% recognition accuracy. The neuromorphic implementation provides incredible detection and classification accuracy for network intrusion detection with extremely low power.

He, X., Islam, M. M., Jin, R., Dai, H..  2017.  Foresighted Deception in Dynamic Security Games. 2017 IEEE International Conference on Communications (ICC). :1–6.

Deception has been widely considered in literature as an effective means of enhancing security protection when the defender holds some private information about the ongoing rivalry unknown to the attacker. However, most of the existing works on deception assume static environments and thus consider only myopic deception, while practical security games between the defender and the attacker may happen in dynamic scenarios. To better exploit the defender's private information in dynamic environments and improve security performance, a stochastic deception game (SDG) framework is developed in this work to enable the defender to conduct foresighted deception. To solve the proposed SDG, a new iterative algorithm that is provably convergent is developed. A corresponding learning algorithm is developed as well to facilitate the defender in conducting foresighted deception in unknown dynamic environments. Numerical results show that the proposed foresighted deception can offer a substantial performance improvement as compared to the conventional myopic deception.

Gao, F..  2017.  Application of Generalized Regression Neural Network in Cloud Security Intrusion Detection. 2017 International Conference on Robots Intelligent System (ICRIS). :54–57.

By using generalized regression neural network clustering analysis, effective clustering of five kinds of network intrusion behavior modes is carried out. First of all, intrusion data is divided into five categories by making use of fuzzy C means clustering algorithm. Then, the samples that are closet to the center of each class in the clustering results are taken as the clustering training samples of generalized neural network for the data training, and the results output by the training are the individual owned invasion category. The experimental results showed that the new algorithm has higher classification accuracy of network intrusion ways, which can provide more reliable data support for the prevention of the network intrusion.

Chen, Y., Chen, W..  2017.  Finger ECG-Based Authentication for Healthcare Data Security Using Artificial Neural Network. 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom). :1–6.

Wearable and mobile medical devices provide efficient, comfortable, and economic health monitoring, having a wide range of applications from daily to clinical scenarios. Health data security becomes a critically important issue. Electrocardiogram (ECG) has proven to be a potential biometric in human recognition over the past decade. Unlike conventional authentication methods using passwords, fingerprints, face, etc., ECG signal can not be simply intercepted, duplicated, and enables continuous identification. However, in many of the studies, algorithms developed are not suitable for practical application, which usually require long ECG data for authentication. In this work, we introduce a two-phase authentication using artificial neural network (NN) models. This algorithm enables fast authentication within only 3 seconds, meanwhile achieves reasonable performance in recognition. We test the proposed method in a controlled laboratory experiment with 50 subjects. Finger ECG signals are collected using a mobile device at different times and physical statues. At the first stage, a ``General'' NN model is constructed based on data from the cohort and used for preliminary screening, while at the second stage ``Personal'' NN models constructed from single individual's data are applied as fine-grained identification. The algorithm is tested on the whole data set, and on different sizes of subsets (5, 10, 20, 30, and 40). Results proved that the proposed method is feasible and reliable for individual authentication, having obtained average False Acceptance Rate (FAR) and False Rejection Rate (FRR) below 10% for the whole data set.

Wang, Y., Pulgar-Painemal, H., Sun, K..  2017.  Online Analysis of Voltage Security in a Microgrid Using Convolutional Neural Networks. 2017 IEEE Power Energy Society General Meeting. :1–5.

Although connecting a microgrid to modern power systems can alleviate issues arising from a large penetration of distributed generation, it can also cause severe voltage instability problems. This paper presents an online method to analyze voltage security in a microgrid using convolutional neural networks. To transform the traditional voltage stability problem into a classification problem, three steps are considered: 1) creating data sets using offline simulation results; 2) training the model with dimensional reduction and convolutional neural networks; 3) testing the online data set and evaluating performance. A case study in the modified IEEE 14-bus system shows the accuracy of the proposed analysis method increases by 6% compared to back-propagation neural network and has better performance than decision tree and support vector machine. The proposed algorithm has great potential in future applications.

2018-03-05
Liu, R., Verbi\v c, G., Xu, Y..  2017.  A New Reliability-Driven Intelligent System for Power System Dynamic Security Assessment. 2017 Australasian Universities Power Engineering Conference (AUPEC). :1–6.

Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.

2018-02-21
Zhang, H., Lin, Y., Xiao, J..  2017.  An innovative analying method for the scale of distribution system security region. 2017 IEEE Power Energy Society General Meeting. :1–5.

Distribution system security region (DSSR) has been widely used to analyze the distribution system operation security. This paper innovatively defines the scale of DSSR, namely the number of boundary constraints and variables of all operational constraints, analyzes and puts forward the corresponding evaluation method. Firstly, the influence of the number of security boundary constraints and variables on the scale of DSSR is analyzed. The factors that mainly influence the scale are found, such as the number of transformers, feeders, as well as sectionalizing switches, and feeder contacts modes between transformers. Secondly, a matrix representing the relations among transformers in distribution system is defined to reflect the characteristics of network's structure, while an algorithm of the scale of DSSR based on transformers connection relationship matrix is proposed, which avoids the trouble of listing security region constraints. Finally, the proposed method is applied in a test system to confirm the effectiveness of the concepts and methods. It provides the necessary foundation for DSSR theory as well as safety analysis.

2018-02-14
Stubbs, J. J., Birch, G. C., Woo, B. L., Kouhestani, C. G..  2017.  Physical security assessment with convolutional neural network transfer learning. 2017 International Carnahan Conference on Security Technology (ICCST). :1–6.

Deep learning techniques have demonstrated the ability to perform a variety of object recognition tasks using visible imager data; however, deep learning has not been implemented as a means to autonomously detect and assess targets of interest in a physical security system. We demonstrate the use of transfer learning on a convolutional neural network (CNN) to significantly reduce training time while keeping detection accuracy of physical security relevant targets high. Unlike many detection algorithms employed by video analytics within physical security systems, this method does not rely on temporal data to construct a background scene; targets of interest can halt motion indefinitely and still be detected by the implemented CNN. A key advantage of using deep learning is the ability for a network to improve over time. Periodic retraining can lead to better detection and higher confidence rates. We investigate training data size versus CNN test accuracy using physical security video data. Due to the large number of visible imagers, significant volume of data collected daily, and currently deployed human in the loop ground truth data, physical security systems present a unique environment that is well suited for analysis via CNNs. This could lead to the creation of algorithmic element that reduces human burden and decreases human analyzed nuisance alarms.

Dou, C., Chen, W. H., Chen, Y. J., Lin, H. T., Lin, W. Y., Ho, M. S., Chang, M. F..  2017.  Challenges of emerging memory and memristor based circuits: Nonvolatile logics, IoT security, deep learning and neuromorphic computing. 2017 IEEE 12th International Conference on ASIC (ASICON). :140–143.

Emerging nonvolatile memory (NVM) devices are not limited to build nonvolatile memory macros. They can also be used in developing nonvolatile logics (nvLogics) for nonvolatile processors, security circuits for the internet of things (IoT), and computing-in-memory (CIM) for artificial intelligence (AI) chips. This paper explores the challenges in circuit designs of emerging memory devices for application in nonvolatile logics, security circuits, and CIM for deep neural networks (DNN). Several silicon-verified examples of these circuits are reviewed in this paper.

2018-02-06
Mispan, M. S., Halak, B., Zwolinski, M..  2017.  Lightweight Obfuscation Techniques for Modeling Attacks Resistant PUFs. 2017 IEEE 2nd International Verification and Security Workshop (IVSW). :19–24.

Building lightweight security for low-cost pervasive devices is a major challenge considering the design requirements of a small footprint and low power consumption. Physical Unclonable Functions (PUFs) have emerged as a promising technology to provide a low-cost authentication for such devices. By exploiting intrinsic manufacturing process variations, PUFs are able to generate unique and apparently random chip identifiers. Strong-PUFs represent a variant of PUFs that have been suggested for lightweight authentication applications. Unfortunately, many of the Strong-PUFs have been shown to be susceptible to modelling attacks (i.e., using machine learning techniques) in which an adversary has access to challenge and response pairs. In this study, we propose an obfuscation technique during post-processing of Strong-PUF responses to increase the resilience against machine learning attacks. We conduct machine learning experiments using Support Vector Machines and Artificial Neural Networks on two Strong-PUFs: a 32-bit Arbiter-PUF and a 2-XOR 32-bit Arbiter-PUF. The predictability of the 32-bit Arbiter-PUF is reduced to $\approx$ 70% by using an obfuscation technique. Combining the obfuscation technique with 2-XOR 32-bit Arbiter-PUF helps to reduce the predictability to $\approx$ 64%. More reduction in predictability has been observed in an XOR Arbiter-PUF because this PUF architecture has a good uniformity. The area overhead with an obfuscation technique consumes only 788 and 1080 gate equivalents for the 32-bit Arbiter-PUF and 2-XOR 32-bit Arbiter-PUF, respectively.

2018-01-10
Zheng, Y., Shi, Y., Guo, K., Li, W., Zhu, L..  2017.  Enhanced word embedding with multiple prototypes. 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering (IEIS). :1–5.

Word representation is one of the basic word repressentation methods in natural language processing, which mapped a word into a dense real-valued vector space based on a hypothesis: words with similar context have similar meanings. Models like NNLM, C&W, CBOW, Skip-gram have been designed for word embeddings learning, and get widely used in many NLP tasks. However, these models assume that one word had only one semantics meaning which is contrary to the real language rules. In this paper we pro-pose a new word unit with multiple meanings and an algorithm to distinguish them by it's context. This new unit can be embedded in most language models and get series of efficient representations by learning variable embeddings. We evaluate a new model MCBOW that integrate CBOW with our word unit on word similarity evaluation task and some downstream experiments, the result indicated our new model can learn different meanings of a word and get a better result on some other tasks.

2017-12-20
Abdelhamid, N., Thabtah, F., Abdel-jaber, H..  2017.  Phishing detection: A recent intelligent machine learning comparison based on models content and features. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :72–77.

In the last decade, numerous fake websites have been developed on the World Wide Web to mimic trusted websites, with the aim of stealing financial assets from users and organizations. This form of online attack is called phishing, and it has cost the online community and the various stakeholders hundreds of million Dollars. Therefore, effective counter measures that can accurately detect phishing are needed. Machine learning (ML) is a popular tool for data analysis and recently has shown promising results in combating phishing when contrasted with classic anti-phishing approaches, including awareness workshops, visualization and legal solutions. This article investigates ML techniques applicability to detect phishing attacks and describes their pros and cons. In particular, different types of ML techniques have been investigated to reveal the suitable options that can serve as anti-phishing tools. More importantly, we experimentally compare large numbers of ML techniques on real phishing datasets and with respect to different metrics. The purpose of the comparison is to reveal the advantages and disadvantages of ML predictive models and to show their actual performance when it comes to phishing attacks. The experimental results show that Covering approach models are more appropriate as anti-phishing solutions, especially for novice users, because of their simple yet effective knowledge bases in addition to their good phishing detection rate.

Yin, S., Bae, C., Kim, S. J., Seo, J. s.  2017.  Designing ECG-based physical unclonable function for security of wearable devices. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). :3509–3512.

As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.

2017-11-20
Cordero, C. García, Hauke, S., Mühlhäuser, M., Fischer, M..  2016.  Analyzing flow-based anomaly intrusion detection using Replicator Neural Networks. 2016 14th Annual Conference on Privacy, Security and Trust (PST). :317–324.

Defending key network infrastructure, such as Internet backbone links or the communication channels of critical infrastructure, is paramount, yet challenging. The inherently complex nature and quantity of network data impedes detecting attacks in real world settings. In this paper, we utilize features of network flows, characterized by their entropy, together with an extended version of the original Replicator Neural Network (RNN) and deep learning techniques to learn models of normality. This combination allows us to apply anomaly-based intrusion detection on arbitrarily large amounts of data and, consequently, large networks. Our approach is unsupervised and requires no labeled data. It also accurately detects network-wide anomalies without presuming that the training data is completely free of attacks. The evaluation of our intrusion detection method, on top of real network data, indicates that it can accurately detect resource exhaustion attacks and network profiling techniques of varying intensities. The developed method is efficient because a normality model can be learned by training an RNN within a few seconds only.

Paramathma, M. K., Devaraj, D., Reddy, B. S..  2016.  Artificial neural network based static security assessment module using PMU measurements for smart grid application. 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS). :1–5.

Power system security is one of the key issues in the operation of smart grid system. Evaluation of power system security is a big challenge considering all the contingencies, due to huge computational efforts involved. Phasor measurement unit plays a vital role in real time power system monitoring and control. This paper presents static security assessment scheme for large scale inter connected power system with Phasor measurement unit using Artificial Neural Network. Voltage magnitude and phase angle are used as input variables of the ANN. The optimal location of PMU under base case and critical contingency cases are determined using Genetic algorithm. The performance of the proposed optimization model was tested with standard IEEE 30 bus system incorporating zero injection buses and successful results have been obtained.

Anderson, Hyrum S., Woodbridge, Jonathan, Filar, Bobby.  2016.  DeepDGA: Adversarially-Tuned Domain Generation and Detection. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :13–21.

Many malware families utilize domain generation algorithms (DGAs) to establish command and control (C&C) connections. While there are many methods to pseudorandomly generate domains, we focus in this paper on detecting (and generating) domains on a per-domain basis which provides a simple and flexible means to detect known DGA families. Recent machine learning approaches to DGA detection have been successful on fairly simplistic DGAs, many of which produce names of fixed length. However, models trained on limited datasets are somewhat blind to new DGA variants. In this paper, we leverage the concept of generative adversarial networks to construct a deep learning based DGA that is designed to intentionally bypass a deep learning based detector. In a series of adversarial rounds, the generator learns to generate domain names that are increasingly more difficult to detect. In turn, a detector model updates its parameters to compensate for the adversarially generated domains. We test the hypothesis of whether adversarially generated domains may be used to augment training sets in order to harden other machine learning models against yet-to-be-observed DGAs. We detail solutions to several challenges in training this character-based generative adversarial network. In particular, our deep learning architecture begins as a domain name auto-encoder (encoder + decoder) trained on domains in the Alexa one million. Then the encoder and decoder are reassembled competitively in a generative adversarial network (detector + generator), with novel neural architectures and training strategies to improve convergence.