Visible to the public Biblio

Filters: Keyword is Tactical MANET  [Clear All Filters]
2018-06-20
Shabut, A. M., Dahal, K., Kaiser, M. S., Hossain, M. A..  2017.  Malicious insider threats in tactical MANET: The performance analysis of DSR routing protocol. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). :187–192.

Tactical Mobile Ad-hoc NETworks (T-MANETs) are mainly used in self-configuring automatic vehicles and robots (also called nodes) for the rescue and military operations. A high dynamic network architecture, nodes unreliability, nodes misbehavior as well as an open wireless medium make it very difficult to assume the nodes cooperation in the `ad-hoc network or comply with routing rules. The routing protocols in the T-MANET are unprotected and subsequently result in various kinds of nodes misbehavior's (such as selfishness and denial of service). This paper introduces a comprehensive analysis of the packet dropping attack includes three types of misbehavior conducted by insiders in the T-MANETs namely black hole, gray hole, and selfish behaviours. An insider threat model is appended to a state-of-the-art routing protocol (such as DSR) and analyze the effect of packet dropping attack on the performance evaluation of DSR in the T-MANET. This paper contributes to the existing knowledge in a way it allows further security research to understand the behaviours of the main threats in MANETs which depends on nods defection in the packet forwarding. The simulation of the packet dropping attack is conducted using the Network Simulator 2 (NS2). It has been found that the network throughput has dropped considerably for black and gray hole attacks whereas the selfish nodes delay the network flow. Moreover, the packet drop rate and energy consumption rate are higher for black and gray hole attacks.

Lou, L., Fan, J. H..  2017.  A new anti-jamming reliable routing protocol for tactical MANETs. 2017 First International Conference on Electronics Instrumentation Information Systems (EIIS). :1–6.

Tactical MANETs are deployed in several challenging situations such as node mobility, presence of radio interference together with malicious jamming attacks, and execrable terrain features etc. Jamming attacks are especially harmful to the reliability of wireless communication, as they can effectively disrupt communication between any node pairs. The nature of Tactical MANETs hinders ineffective most of existing reliable routing schemes for ordinary wireless mobile networks. Routing Protocols in Tactical MANET s face serious security and reliability challenges. Selecting a long lasting and steady-going route is a critical task. Due to the lack of accurate acquisition and evaluation of the transmission characteristics, routing algorithms may result in continual reconstruction and high control overhead. This paper studies the impact of jamming and interference on the common protocols of tactical communications and presents a neighbor dependency-based reliable routing algorithm. According to the neighbor dependency based on channel state information evaluated by Exponential Smoothing Method, how to select a neighboring node as the next hop will greatly affect the transmission reliability. Finally, the performance of the reliable routing protocol based on neighbor dependency is tested in OPNET, and compared with the classical AODV algorithm and the improved AODV based on link Cost (CAODV) algorithm. The simulation results show that the protocol presented in this paper has better data transmission reliability.