Visible to the public Biblio

Filters: Keyword is black hole  [Clear All Filters]
2023-08-25
Khujamatov, Halimjon, Lazarev, Amir, Akhmedov, Nurshod, Asenbaev, Nurbek, Bekturdiev, Aybek.  2022.  Overview Of Vanet Network Security. 2022 International Conference on Information Science and Communications Technologies (ICISCT). :1–6.
This article provides an overview of the security of VANET, which is a vehicle network. When reviewing this topic, publications of various researchers were considered. The article provides information security requirements for VANET, an overview of security research, an overview of existing attacks, methods for detecting attacks and appropriate countermeasures against such threats.
2023-02-17
Daoud, Luka, Rafla, Nader.  2022.  Energy-Efficient Black Hole Router Detection in Network-on-Chip. 2022 IEEE 35th International System-on-Chip Conference (SOCC). :1–6.
The Network-on-Chip (NoC) is the communication heart in Multiprocessors System-on-Chip (MPSoC). It offers an efficient and scalable interconnection platform, which makes it a focal point of potential security threats. Due to outsourcing design, the NoC can be infected with a malicious circuit, known as Hardware Trojan (HT), to leak sensitive information or degrade the system’s performance and function. An HT can form a security threat by consciously dropping packets from the NoC, structuring a Black Hole Router (BHR) attack. This paper presents an end-to-end secure interconnection network against the BHR attack. The proposed scheme is energy-efficient to detect the BHR in runtime with 1% and 2% average throughput and energy consumption overheads, respectively.
2022-04-13
Abdiyeva-Aliyeva, Gunay, Hematyar, Mehran, Bakan, Sefa.  2021.  Development of System for Detection and Prevention of Cyber Attacks Using Artifıcial Intelligence Methods. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1—5.
Artificial intelligence (AI) technologies have given the cyber security industry a huge leverage with the possibility of having significantly autonomous models that can detect and prevent cyberattacks – even though there still exist some degree of human interventions. AI technologies have been utilized in gathering data which can then be processed into information that are valuable in the prevention of cyberattacks. These AI-based cybersecurity frameworks have commendable scalability about them and are able to detect malicious activities within the cyberspace in a prompter and more efficient manner than conventional security architectures. However, our one or two completed studies did not provide a complete and clear analyses to apply different machine learning algorithms on different media systems. Because of the existing methods of attack and the dynamic nature of malware or other unwanted software (adware etc.) it is important to automatically and systematically create, update and approve malicious packages that can be available to the public. Some of Complex tests have shown that DNN performs maybe can better than conventional machine learning classification. Finally, we present a multiple, large and hybrid DNN torrent structure called Scale-Hybrid-IDS-AlertNet, which can be used to effectively monitor to detect and review the impact of network traffic and host-level events to warn directly or indirectly about cyber-attacks. Besides this, they are also highly adaptable and flexible, with commensurate efficiency and accuracy when it comes to the detection and prevention of cyberattacks.There has been a multiplicity of AI-based cyber security architectures in recent years, and each of these has been found to show varying degree of effectiveness. Deep Neural Networks, which tend to be more complex and even more efficient, have been the major focus of research studies in recent times. In light of the foregoing, the objective of this paper is to discuss the use of AI methods in fighting cyberattacks like malware and DDoS attacks, with attention on DNN-based models.
2021-03-09
Stępień, K., Poniszewska-Marańda, A..  2020.  Security methods against Black Hole attacks in Vehicular Ad-Hoc Network. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1–4.
Vehicular Ad-Hoc Networks (VANET) are liable to the Black, Worm and Gray Hole attacks because of the broadcast nature of the wireless medium and a lack of authority standards. Black Hole attack covers the situation when a malicious node uses its routing protocol in order to publicize itself for having the shortest route to the destination node. This aggressive node publicizes its availability of fresh routes regardless of checking its routing table. The consequences of these attacks could lead not only to the broken infrastructure, but could cause hammering people's lives. This paper aims to investigate and compare methods for preventing such types of attacks in a VANET.
2019-06-10
Umar, M., Sabo, A., Tata, A. A..  2018.  Modified Cooperative Bait Detection Scheme for Detecting and Preventing Cooperative Blackhole and Eavesdropping Attacks in MANET. 2018 International Conference on Networking and Network Applications (NaNA). :121–126.

Mobile ad-hoc network (MANET) is a system of wireless mobile nodes that are dynamically self-organized in arbitrary and temporary topologies, that have received increasing interest due to their potential applicability to numerous applications. The deployment of such networks however poses several security challenging issues, due to their lack of fixed communication infrastructure, centralized administration, nodes mobility and dynamic topological changes, which make it susceptible to passive and active attacks such as single and cooperative black hole, sinkhole and eavesdropping attacks. The mentioned attacks mainly disrupt data routing processes by giving false routing information or stealing secrete information by malicious nodes in MANET. Thus, finding safe routing path by avoiding malicious nodes is a genuine challenge. This paper aims at combining the existing cooperative bait detection scheme which uses the baiting procedure to bait malicious nodes into sending fake route reply and then using a reverse tracing operation to detect the malicious nodes, with an RSA encryption technique to encode data packet before transmitting it to the destination to prevent eavesdropper and other malicious nodes from unauthorized read and write on the data packet. The proposed work out performs the existing Cooperative Bait Detection Scheme (CBDS) in terms of packet delivery ratio, network throughput, end to end delay, and the routing overhead.

Zalte, S. S., Ghorpade, V. R..  2018.  Intrusion Detection System for MANET. 2018 3rd International Conference for Convergence in Technology (I2CT). :1–4.

In Mobile Ad-hoc Network (MANET), we cannot predict the clear picture of the topology of a node because of its varying nature. Without notice participation and departure of nodes results in lack of trust relationship between nodes. In such circumstances, there is no guarantee that path between two nodes would be secure or free of malicious nodes. The presence of single malicious node could lead repeatedly compromised node. After providing security to route and data packets still, there is a need for the implementation of defense mechanism that is intrusion detection system(IDS) against compromised nodes. In this paper, we have implemented IDS, which defend against some routing attacks like the black hole and gray hole successfully. After measuring performance we get marginally increased Packet delivery ratio and Throughput.

2019-01-16
Adeniji, V. O., Sibanda, K..  2018.  Analysis of the effect of malicious packet drop attack on packet transmission in wireless mesh networks. 2018 Conference on Information Communications Technology and Society (ICTAS). :1–6.
Wireless mesh networks (WMNs) are known for possessing good attributes such as low up-front cost, easy network maintenance, and reliable service coverage. This has largely made them to be adopted in various environments such as; school campus networks, community networking, pervasive healthcare, office and home automation, emergency rescue operations and ubiquitous wireless networks. The routing nodes are equipped with self-organized and self-configuring capabilities. However, the routing mechanisms of WMNs depend on the collaboration of all participating nodes for reliable network performance. The authors of this paper have noted that most routing algorithms proposed for WMNs in the last few years are designed with the assumption that all the participating nodes will collaboratively be involved in relaying the data packets originated from a source to a multi-hop destination. Such design approach however exposes WMNs to vulnerability such as malicious packet drop attack. This paper presents an evaluation of the effect of the black hole attack with other influential factors in WMNs. In this study, NS-3 simulator was used with AODV as the routing protocol. The results show that the packet delivery ratio and throughput of WMN under attack decreases sharply as compared to WMN free from attack. On an average, 47.41% of the transmitted data packets were dropped in presence of black hole attack.
2018-11-19
Ali, S., Khan, M. A., Ahmad, J., Malik, A. W., ur Rehman, A..  2018.  Detection and Prevention of Black Hole Attacks in IOT Amp;Amp; WSN. 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). :217–226.

Wireless Sensor Network is the combination of small devices called sensor nodes, gateways and software. These nodes use wireless medium for transmission and are capable to sense and transmit the data to other nodes. Generally, WSN composed of two types of nodes i.e. generic nodes and gateway nodes. Generic nodes having the ability to sense while gateway nodes are used to route that information. IoT now extended to IoET (internet of Everything) to cover all electronics exist around, like a body sensor networks, VANET's, smart grid stations, smartphone, PDA's, autonomous cars, refrigerators and smart toasters that can communicate and share information using existing network technologies. The sensor nodes in WSN have very limited transmission range as well as limited processing speed, storage capacities and low battery power. Despite a wide range of applications using WSN, its resource constrained nature given birth to a number severe security attacks e.g. Selective Forwarding attack, Jamming-attack, Sinkhole attack, Wormhole attack, Sybil attack, hello Flood attacks, Grey Hole, and the most dangerous BlackHole Attacks. Attackers can easily exploit these vulnerabilities to compromise the WSN network.

2018-06-20
Waraich, P. S., Batra, N..  2017.  Prevention of denial of service attack over vehicle ad hoc networks using quick response table. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :586–591.

Secure routing over VANET is a major issue due to its high mobility environment. Due to dynamic topology, routes are frequently updated and also suffers from link breaks due to the obstacles i.e. buildings, tunnels and bridges etc. Frequent link breaks can cause packet drop and thus result in degradation of network performance. In case of VANETs, it becomes very difficult to identify the reason of the packet drop as it can also occur due to the presence of a security threat. VANET is a type of wireless adhoc network and suffer from common attacks which exist for mobile adhoc network (MANET) i.e. Denial of Services (DoS), Black hole, Gray hole and Sybil attack etc. Researchers have already developed various security mechanisms for secure routing over MANET but these solutions are not fully compatible with unique attributes of VANET i.e. vehicles can communicate with each other (V2V) as well as communication can be initiated with infrastructure based network (V2I). In order to secure the routing for both types of communication, there is need to develop a solution. In this paper, a method for secure routing is introduced which can identify as well as eliminate the existing security threat.

Kolade, Ayanwuyi T., Zuhairi, Megat F., Yafi, Eiad, Zheng, C. L..  2017.  Performance Analysis of Black Hole Attack in MANET. Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. :1:1–1:7.

The underlying element that supports the device communication in the MANET is the wireless connection capability. Each node has the ability to communicate with other nodes via the creation of routing path. However, due to the fact that nodes in MANET are autonomous and the routing paths created are only based on current condition of the network, some of the paths are extremely instable. In light of these shortcomings, many research works emphasizes on the improvement of routing path algorithm. Regardless of the application the MANET can support, the MANET possesses unique characteristics, which enables mobile nodes to form dynamic communication irrespective the availability of a fixed network. However the inherent nature of MANET has led to nodes in MANET to be vulnerable to denied services. A typical Denial of Service (DoS) in MANET is the Black Hole attack, caused by a malicious node, or a set of nodes advertising false routing updates. Typically, the malicious nodes are difficult to be detected. Each node is equipped with a particular type of routing protocol and voluntarily participates in relaying the packets. However, some nodes may not be genuine and has been tampered to behave maliciously, which causes the Black Hole attack. Several on demand routing protocol e.g. Ad hoc On Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) are susceptible to such attack. In principle, the attack exploits the Route Request (RREQ) discovery operation and falsifies the sequence number and the shortest path information. The malicious nodes are able to utilize the loophole in the RREQ discovery process due to the absence of validation process. As a result, genuine RREQ packets are exploited and erroneously relayed to a false node(s). This paper highlights the effect Black Hole nodes to the network performance and therefore substantiates the previous work done [1]. In this paper, several simulation experiments are iterated using NS-2, which employed various scenarios and traffic loads. The simulation results show the presence of Black Hole nodes in a network can substantially affects the packet delivery ratio and throughput by as much as 100%.

Shabut, A. M., Dahal, K., Kaiser, M. S., Hossain, M. A..  2017.  Malicious insider threats in tactical MANET: The performance analysis of DSR routing protocol. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). :187–192.

Tactical Mobile Ad-hoc NETworks (T-MANETs) are mainly used in self-configuring automatic vehicles and robots (also called nodes) for the rescue and military operations. A high dynamic network architecture, nodes unreliability, nodes misbehavior as well as an open wireless medium make it very difficult to assume the nodes cooperation in the `ad-hoc network or comply with routing rules. The routing protocols in the T-MANET are unprotected and subsequently result in various kinds of nodes misbehavior's (such as selfishness and denial of service). This paper introduces a comprehensive analysis of the packet dropping attack includes three types of misbehavior conducted by insiders in the T-MANETs namely black hole, gray hole, and selfish behaviours. An insider threat model is appended to a state-of-the-art routing protocol (such as DSR) and analyze the effect of packet dropping attack on the performance evaluation of DSR in the T-MANET. This paper contributes to the existing knowledge in a way it allows further security research to understand the behaviours of the main threats in MANETs which depends on nods defection in the packet forwarding. The simulation of the packet dropping attack is conducted using the Network Simulator 2 (NS2). It has been found that the network throughput has dropped considerably for black and gray hole attacks whereas the selfish nodes delay the network flow. Moreover, the packet drop rate and energy consumption rate are higher for black and gray hole attacks.