Visible to the public Biblio

Filters: Keyword is data sharing  [Clear All Filters]
2019-04-05
Ardi, Calvin, Heidemann, John.  2018.  Leveraging Controlled Information Sharing for Botnet Activity Detection. Proceedings of the 2018 Workshop on Traffic Measurements for Cybersecurity. :14-20.

Today's malware often relies on DNS to enable communication with command-and-control (C&C). As defenses that block C&C traffic improve, malware use sophisticated techniques to hide this traffic, including "fast flux" names and Domain-Generation Algorithms (DGAs). Detecting this kind of activity requires analysis of DNS queries in network traffic, yet these signals are sparse. As bot countermeasures grow in sophistication, detecting these signals increasingly requires the synthesis of information from multiple sites. Yet sharing security information across organizational boundaries to date has been infrequent and ad hoc because of unknown risks and uncertain benefits. In this paper, we take steps towards formalizing cross-site information sharing and quantifying the benefits of data sharing. We use a case study on DGA-based botnet detection to evaluate how sharing cybersecurity data can improve detection sensitivity and allow the discovery of malicious activity with greater precision.

2018-12-03
Kostopoulos, Alexandros, Sfakianakis, Evangelos, Chochliouros, Ioannis, Pettersson, John Sören, Krenn, Stephan, Tesfay, Welderufael, Migliavacca, Andrea, Hörandner, Felix.  2017.  Towards the Adoption of Secure Cloud Identity Services. Proceedings of the 12th International Conference on Availability, Reliability and Security. :90:1–90:7.

Enhancing trust among service providers and end-users with respect to data protection is an urgent matter in the growing information society. In response, CREDENTIAL proposes an innovative cloud-based service for storing, managing, and sharing of digital identity information and other highly critical personal data with a demonstrably higher level of security than other current solutions. CREDENTIAL enables end-to-end confidentiality and authenticity as well as improved privacy in cloud-based identity management and data sharing scenarios. In this paper, besides clarifying the vision and use cases, we focus on the adoption of CREDENTIAL. Firstly, for adoption by providers, we elaborate on the functionality of CREDENTIAL, the services implementing these functions, and the physical architecture needed to deploy such services. Secondly, we investigate factors from related research that could be used to facilitate CREDENTIAL's adoption and list key benefits as convincing arguments.

2018-08-23
Yue, L., Junqin, H., Shengzhi, Q., Ruijin, W..  2017.  Big Data Model of Security Sharing Based on Blockchain. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :117–121.

The rise of big data age in the Internet has led to the explosive growth of data size. However, trust issue has become the biggest problem of big data, leading to the difficulty in data safe circulation and industry development. The blockchain technology provides a new solution to this problem by combining non-tampering, traceable features with smart contracts that automatically execute default instructions. In this paper, we present a credible big data sharing model based on blockchain technology and smart contract to ensure the safe circulation of data resources.

2018-06-11
Kaaniche, N., Laurent, M..  2017.  A blockchain-based data usage auditing architecture with enhanced privacy and availability. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–5.

Recent years have witnessed the trend of increasingly relying on distributed infrastructures. This increased the number of reported incidents of security breaches compromising users' privacy, where third parties massively collect, process and manage users' personal data. Towards these security and privacy challenges, we combine hierarchical identity based cryptographic mechanisms with emerging blockchain infrastructures and propose a blockchain-based data usage auditing architecture ensuring availability and accountability in a privacy-preserving fashion. Our approach relies on the use of auditable contracts deployed in blockchain infrastructures. Thus, it offers transparent and controlled data access, sharing and processing, so that unauthorized users or untrusted servers cannot process data without client's authorization. Moreover, based on cryptographic mechanisms, our solution preserves privacy of data owners and ensures secrecy for shared data with multiple service providers. It also provides auditing authorities with tamper-proof evidences for data usage compliance.

2018-03-19
Pathare, K. G., Chouragade, P. M..  2017.  Reliable Data Sharing Using Revocable-Storage Identity-Based Encryption in Cloud Storage. 2017 International Conference on Recent Trends in Electrical, Electronics and Computing Technologies (ICRTEECT). :173–176.

Security has always been concern when it comes to data sharing in cloud computing. Cloud computing provides high computation power and memory. Cloud computing is convenient way for data sharing. But users may sometime needs to outsourced the shared data to cloud server though it contains valuable and sensitive information. Thus it is necessary to provide cryptographically enhanced access control for data sharing system. This paper discuss about the promising access control for data sharing in cloud which is identity-based encryption. We introduce the efficient revocation scheme for the system which is revocable-storage identity-based encryption scheme. It provides both forward and backward security of ciphertext. Then we will have glance at the architecture and steps involved in identity-based encryption. Finally we propose system that provide secure file sharing system using identity-based encryption scheme.

Heckman, M. R., Schell, R. R., Reed, E. E..  2015.  A Multi-Level Secure File Sharing Server and Its Application to a Multi-Level Secure Cloud. MILCOM 2015 - 2015 IEEE Military Communications Conference. :1224–1229.
Contemporary cloud environments are built on low-assurance components, so they cannot provide a high level of assurance about the isolation and protection of information. A ``multi-level'' secure cloud environment thus typically consists of multiple, isolated clouds, each of which handles data of only one security level. Not only are such environments duplicative and costly, data ``sharing'' must be implemented by massive, wasteful copying of data from low-level domains to high-level domains. The requirements for certifiable, scalable, multi-level cloud security are threefold: 1) To have trusted, high-assurance components available for use in creating a multi-level secure cloud environment; 2) To design a cloud architecture that efficiently uses the high-assurance components in a scalable way, and 3) To compose the secure components within the scalable architecture while still verifiably maintaining the system security properties. This paper introduces a trusted, high-assurance file server and architecture that satisfies all three requirements. The file server is built on mature technology that was previously certified and deployed across domains from TS/SCI to Unclassified and that supports high-performance, low-to-high and high-to-low file sharing with verifiable security.
2018-02-06
Brust, M. R., Zurad, M., Hentges, L., Gomes, L., Danoy, G., Bouvry, P..  2017.  Target Tracking Optimization of UAV Swarms Based on Dual-Pheromone Clustering. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

Unmanned Aerial Vehicles (UAVs) are autonomous aircraft that, when equipped with wireless communication interfaces, can share data among themselves when in communication range. Compared to single UAVs, using multiple UAVs as a collaborative swarm is considerably more effective for target tracking, reconnaissance, and surveillance missions because of their capacity to tackle complex problems synergistically. Success rates in target detection and tracking depend on map coverage performance, which in turn relies on network connectivity between UAVs to propagate surveillance results to avoid revisiting already observed areas. In this paper, we consider the problem of optimizing three objectives for a swarm of UAVs: (a) target detection and tracking, (b) map coverage, and (c) network connectivity. Our approach, Dual-Pheromone Clustering Hybrid Approach (DPCHA), incorporates a multi-hop clustering and a dual-pheromone ant-colony model to optimize these three objectives. Clustering keeps stable overlay networks, while attractive and repulsive pheromones mark areas of detected targets and visited areas. Additionally, DPCHA introduces a disappearing target model for dealing with temporarily invisible targets. Extensive simulations show that DPCHA produces significant improvements in the assessment of coverage fairness, cluster stability, and connection volatility. We compared our approach with a pure dual- pheromone approach and a no-base model, which removes the base station from the model. Results show an approximately 50% improvement in map coverage compared to the pure dual-pheromone approach.

Shi, Y., Piao, C., Zheng, L..  2017.  Differential-Privacy-Based Correlation Analysis in Railway Freight Service Applications. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :35–39.

With the development of modern logistics industry railway freight enterprises as the main traditional logistics enterprises, the service mode is facing many problems. In the era of big data, for railway freight enterprises, coordinated development and sharing of information resources have become the requirements of the times, while how to protect the privacy of citizens has become one of the focus issues of the public. To prevent the disclosure or abuse of the citizens' privacy information, the citizens' privacy needs to be preserved in the process of information opening and sharing. However, most of the existing privacy preserving models cannot to be used to resist attacks with continuously growing background knowledge. This paper presents the method of applying differential privacy to protect associated data, which can be shared in railway freight service association information. First, the original service data need to slice by optimal shard length, then differential method and apriori algorithm is used to add Laplace noise in the Candidate sets. Thus the citizen's privacy information can be protected even if the attacker gets strong background knowledge. Last, sharing associated data to railway information resource partners. The steps and usefulness of the discussed privacy preservation method is illustrated by an example.

2018-01-10
Ping, Haoyue, Stoyanovich, Julia, Howe, Bill.  2017.  DataSynthesizer: Privacy-Preserving Synthetic Datasets. Proceedings of the 29th International Conference on Scientific and Statistical Database Management. :42:1–42:5.
To facilitate collaboration over sensitive data, we present DataSynthesizer, a tool that takes a sensitive dataset as input and generates a structurally and statistically similar synthetic dataset with strong privacy guarantees. The data owners need not release their data, while potential collaborators can begin developing models and methods with some confidence that their results will work similarly on the real dataset. The distinguishing feature of DataSynthesizer is its usability — the data owner does not have to specify any parameters to start generating and sharing data safely and effectively. DataSynthesizer consists of three high-level modules — DataDescriber, DataGenerator and ModelInspector. The first, DataDescriber, investigates the data types, correlations and distributions of the attributes in the private dataset, and produces a data summary, adding noise to the distributions to preserve privacy. DataGenerator samples from the summary computed by DataDescriber and outputs synthetic data. ModelInspector shows an intuitive description of the data summary that was computed by DataDescriber, allowing the data owner to evaluate the accuracy of the summarization process and adjust any parameters, if desired. We describe DataSynthesizer and illustrate its use in an urban science context, where sharing sensitive, legally encumbered data between agencies and with outside collaborators is reported as the primary obstacle to data-driven governance. The code implementing all parts of this work is publicly available at https://github.com/DataResponsibly/DataSynthesizer.
Deng, Xiyue, Mirkovic, Jelena.  2017.  Commoner Privacy And A Study On Network Traces. Proceedings of the 33rd Annual Computer Security Applications Conference. :566–576.
Differential privacy has emerged as a promising mechanism for privacy-safe data mining. One popular differential privacy mechanism allows researchers to pose queries over a dataset, and adds random noise to all output points to protect privacy. While differential privacy produces useful data in many scenarios, added noise may jeopardize utility for queries posed over small populations or over long-tailed datasets. Gehrke et al. proposed crowd-blending privacy, with random noise added only to those output points where fewer than k individuals (a configurable parameter) contribute to the point in the same manner. This approach has a lower privacy guarantee, but preserves more research utility than differential privacy. We propose an even more liberal privacy goal—commoner privacy—which fuzzes (omits, aggregates or adds noise to) only those output points where an individual's contribution to this point is an outlier. By hiding outliers, our mechanism hides the presence or absence of an individual in a dataset. We propose one mechanism that achieves commoner privacy—interactive k-anonymity. We also discuss query composition and show how we can guarantee privacy via either a pre-sampling step or via query introspection. We implement interactive k-anonymity and query introspection in a system called Patrol for network trace processing. Our evaluation shows that commoner privacy prevents common attacks while preserving orders of magnitude higher research utility than differential privacy, and at least 9-49 times the utility of crowd-blending privacy.
Zaman, A. N. K., Obimbo, C., Dara, R. A..  2017.  An improved differential privacy algorithm to protect re-identification of data. 2017 IEEE Canada International Humanitarian Technology Conference (IHTC). :133–138.

In the present time, there has been a huge increase in large data repositories by corporations, governments, and healthcare organizations. These repositories provide opportunities to design/improve decision-making systems by mining trends and patterns from the data set (that can provide credible information) to improve customer service (e.g., in healthcare). As a result, while data sharing is essential, it is an obligation to maintaining the privacy of the data donors as data custodians have legal and ethical responsibilities to secure confidentiality. This research proposes a 2-layer privacy preserving (2-LPP) data sanitization algorithm that satisfies ε-differential privacy for publishing sanitized data. The proposed algorithm also reduces the re-identification risk of the sanitized data. The proposed algorithm has been implemented, and tested with two different data sets. Compared to other existing works, the results obtained from the proposed algorithm show promising performance.

2017-12-12
Will, M. A., Ko, R. K. L., Schlickmann, S. J..  2017.  Anonymous Data Sharing Between Organisations with Elliptic Curve Cryptography. 2017 IEEE Trustcom/BigDataSE/ICESS. :1024–1031.

Promoting data sharing between organisations is challenging, without the added concerns over having actions traced. Even with encrypted search capabilities, the entities digital location and downloaded information can be traced, leaking information to the hosting organisation. This is a problem for law enforcement and government agencies, where any information leakage is not acceptable, especially for investigations. Anonymous routing is a technique to stop a host learning which agency is accessing information. Many related works for anonymous routing have been proposed, but are designed for Internet traffic, and are over complicated for internal usage. A streaming design for circuit creation is proposed using elliptic curve cryptography. Allowing for a simple anonymous routing solution, which provides fast performance with source and destination anonymity to other organisations.

2017-02-27
Huda, S., Sudarsono, A., Harsono, T..  2015.  Secure data exchange using authenticated Ciphertext-Policy Attributed-Based Encryption. 2015 International Electronics Symposium (IES). :134–139.

Easy sharing files in public network that is intended only for certain people often resulting in the leaking of sharing folders or files and able to be read also by others who are not authorized. Secure data is one of the most challenging issues in data sharing systems. Here, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) is a reliable asymmetric encryption mechanism which deals with secure data and used for data encryption. It is not necessary encrypted to one particular user, but recipient is only able to decrypt if and only if the attribute set of his private key match with the specified policy in the ciphertext. In this paper, we propose a secure data exchange using CP-ABE with authentication feature. The data is attribute-based encrypted to satisfy confidentiality feature and authenticated to satisfy data authentication simultaneously.

2017-02-23
Fisk, G., Ardi, C., Pickett, N., Heidemann, J., Fisk, M., Papadopoulos, C..  2015.  Privacy Principles for Sharing Cyber Security Data. 2015 IEEE Security and Privacy Workshops. :193–197.

Sharing cyber security data across organizational boundaries brings both privacy risks in the exposure of personal information and data, and organizational risk in disclosing internal information. These risks occur as information leaks in network traffic or logs, and also in queries made across organizations. They are also complicated by the trade-offs in privacy preservation and utility present in anonymization to manage disclosure. In this paper, we define three principles that guide sharing security information across organizations: Least Disclosure, Qualitative Evaluation, and Forward Progress. We then discuss engineering approaches that apply these principles to a distributed security system. Application of these principles can reduce the risk of data exposure and help manage trust requirements for data sharing, helping to meet our goal of balancing privacy, organizational risk, and the ability to better respond to security with shared information.

2015-05-06
Al-Anzi, F.S., Salman, A.A., Jacob, N.K., Soni, J..  2014.  Towards robust, scalable and secure network storage in Cloud Computing. Digital Information and Communication Technology and it's Applications (DICTAP), 2014 Fourth International Conference on. :51-55.

The term Cloud Computing is not something that appeared overnight, it may come from the time when computer system remotely accessed the applications and services. Cloud computing is Ubiquitous technology and receiving a huge attention in the scientific and industrial community. Cloud computing is ubiquitous, next generation's in-formation technology architecture which offers on-demand access to the network. It is dynamic, virtualized, scalable and pay per use model over internet. In a cloud computing environment, a cloud service provider offers “house of resources” includes applications, data, runtime, middleware, operating system, virtualization, servers, data storage and sharing and networking and tries to take up most of the overhead of client. Cloud computing offers lots of benefits, but the journey of the cloud is not very easy. It has several pitfalls along the road because most of the services are outsourced to third parties with added enough level of risk. Cloud computing is suffering from several issues and one of the most significant is Security, privacy, service availability, confidentiality, integrity, authentication, and compliance. Security is a shared responsibility of both client and service provider and we believe security must be information centric, adaptive, proactive and built in. Cloud computing and its security are emerging study area nowadays. In this paper, we are discussing about data security in cloud at the service provider end and proposing a network storage architecture of data which make sure availability, reliability, scalability and security.

2015-05-05
Lei Xu, Pham Dang Khoa, Seung Hun Kim, Won Woo Ro, Weidong Shi.  2014.  LUT based secure cloud computing #x2014; An implementation using FPGAs. ReConFigurable Computing and FPGAs (ReConFig), 2014 International Conference on. :1-6.

Cloud computing is widely deployed to handle challenges such as big data processing and storage. Due to the outsourcing and sharing feature of cloud computing, security is one of the main concerns that hinders the end users to shift their businesses to the cloud. A lot of cryptographic techniques have been proposed to alleviate the data security issues in cloud computing, but most of these works focus on solving a specific security problem such as data sharing, comparison, searching, etc. At the same time, little efforts have been done on program security and formalization of the security requirements in the context of cloud computing. We propose a formal definition of the security of cloud computing, which captures the essence of the security requirements of both data and program. Analysis of some existing technologies under the proposed definition shows the effectiveness of the definition. We also give a simple look-up table based solution for secure cloud computing which satisfies the given definition. As FPGA uses look-up table as its main computation component, it is a suitable hardware platform for the proposed secure cloud computing scheme. So we use FPGAs to implement the proposed solution for k-means clustering algorithm, which shows the effectiveness of the proposed solution.
 

2015-05-01
Thilakanathan, D., Calvo, R.A., Shiping Chen, Nepal, S., Dongxi Liu, Zic, J..  2014.  Secure Multiparty Data Sharing in the Cloud Using Hardware-Based TPM Devices. Cloud Computing (CLOUD), 2014 IEEE 7th International Conference on. :224-231.

The trend towards Cloud computing infrastructure has increased the need for new methods that allow data owners to share their data with others securely taking into account the needs of multiple stakeholders. The data owner should be able to share confidential data while delegating much of the burden of access control management to the Cloud and trusted enterprises. The lack of such methods to enhance privacy and security may hinder the growth of cloud computing. In particular, there is a growing need to better manage security keys of data shared in the Cloud. BYOD provides a first step to enabling secure and efficient key management, however, the data owner cannot guarantee that the data consumers device itself is secure. Furthermore, in current methods the data owner cannot revoke a particular data consumer or group efficiently. In this paper, we address these issues by incorporating a hardware-based Trusted Platform Module (TPM) mechanism called the Trusted Extension Device (TED) together with our security model and protocol to allow stronger privacy of data compared to software-based security protocols. We demonstrate the concept of using TED for stronger protection and management of cryptographic keys and how our secure data sharing protocol will allow a data owner (e.g, author) to securely store data via untrusted Cloud services. Our work prevents keys to be stolen by outsiders and/or dishonest authorised consumers, thus making it particularly attractive to be implemented in a real-world scenario.

2015-04-30
Al-Anzi, F.S., Salman, A.A., Jacob, N.K., Soni, J..  2014.  Towards robust, scalable and secure network storage in Cloud Computing. Digital Information and Communication Technology and it's Applications (DICTAP), 2014 Fourth International Conference on. :51-55.

The term Cloud Computing is not something that appeared overnight, it may come from the time when computer system remotely accessed the applications and services. Cloud computing is Ubiquitous technology and receiving a huge attention in the scientific and industrial community. Cloud computing is ubiquitous, next generation's in-formation technology architecture which offers on-demand access to the network. It is dynamic, virtualized, scalable and pay per use model over internet. In a cloud computing environment, a cloud service provider offers “house of resources” includes applications, data, runtime, middleware, operating system, virtualization, servers, data storage and sharing and networking and tries to take up most of the overhead of client. Cloud computing offers lots of benefits, but the journey of the cloud is not very easy. It has several pitfalls along the road because most of the services are outsourced to third parties with added enough level of risk. Cloud computing is suffering from several issues and one of the most significant is Security, privacy, service availability, confidentiality, integrity, authentication, and compliance. Security is a shared responsibility of both client and service provider and we believe security must be information centric, adaptive, proactive and built in. Cloud computing and its security are emerging study area nowadays. In this paper, we are discussing about data security in cloud at the service provider end and proposing a network storage architecture of data which make sure availability, reliability, scalability and security.