Visible to the public Biblio

Filters: Keyword is integrity  [Clear All Filters]
2019-12-05
Bertino, Elisa, Nabeel, Mohamed.  2018.  Securing Named Data Networks: Challenges and the Way Forward. Proceedings of the 23Nd ACM on Symposium on Access Control Models and Technologies. :51-59.

Despite decades of research on the Internet security, we constantly hear about mega data breaches and malware infections affecting hundreds of millions of hosts. The key reason is that the current threat model of the Internet relies on two assumptions that no longer hold true: (1) Web servers, hosting the content, are secure, (2) each Internet connection starts from the original content provider and terminates at the content consumer. Internet security is today merely patched on top of the TCP/IP protocol stack. In order to achieve comprehensive security for the Internet, we believe that a clean-slate approach must be adopted where a content based security model is employed. Named Data Networking (NDN) is a step in this direction which is envisioned to be the next generation Internet architecture based on a content centric communication model. NDN is currently being designed with security as a key requirement, and thus to support content integrity, authenticity, confidentiality and privacy. However, in order to meet such a requirement, one needs to overcome several challenges, especially in either large operational environments or resource constrained networks. In this paper, we explore the security challenges in achieving comprehensive content security in NDN and propose a research agenda to address some of the challenges.

2019-10-15
Detken, K., Jahnke, M., Humann, M., Rollgen, B..  2018.  Integrity and Non-Repudiation of VoIP Streams with TPM2.0 over Wi-Fi Networks. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :82–87.
The complete digitization of telecommunications allows new attack scenarios, which have not been possible with legacy phone technologies before. The reason is that physical access to legacy phone technologies was necessary. Regarding internet-based communication like voice over the internet protocol (VoIP), which can be established between random nodes, eavesdropping can happen everywhere and much easier. Additionally, injection of undesirable communication like SPAM or SPIT in digital networks is simpler, too. Encryption is not sufficient because it is also necessary to know which participants are talking to each other. For that reason, the research project INTEGER has been started with the main goals of providing secure authentication and integrity of a VoIP communication by using a digital signature. The basis of this approach is the Trusted Platform Module (TPM) of the Trusted Computing Group (TCG) which works as a hardware-based trusted anchor. The TPM will be used inside of wireless IP devices with VoIP softphones. The question is if it is possible to fulfill the main goals of the project in wireless scenarios with Wi-Fi technologies. That is what this contribution aims to clarify.
2019-05-08
Xiang, Jie, Chen, Long.  2018.  A Method of Docker Container Forensics Based on API. Proceedings of the 2Nd International Conference on Cryptography, Security and Privacy. :159–164.
As one of the main technologies supporting cloud computing virtualization, Docker is featured in its fast and lightweight virtualization which has been adopted by numerous platform-as-a-service (PaaS) systems, but forensics research for Docker has not been paid the corresponding attention yet. Docker exists to store and distribute illegal information as a carrier for initiating attacks like traditional cloud services. The paper explains Docker service principles and structural features, and analyzing the model and method of forensics in related cloud environment, then proposes a Docker container forensics solution based on the Docker API. In this paper, Docker APIs realize the derivation of the Docker container instances, copying and back-up of the container data volume, extraction of the key evidence data, such as container log information, configuration information and image information, thus conducts localized fixed forensics to volatile evidence and data in the Docker service container. Combined with digital signatures and digital encryption technology to achieve the integrity of the original evidence data protection.
2019-03-11
Broström, Tom, Zhu, John, Robucci, Ryan, Younis, Mohamed.  2018.  IoT Boot Integrity Measuring and Reporting. SIGBED Rev.. 15:14–21.
The current era can be characterized by the massive reliance on computing platforms in almost all domains, such as manufacturing, defense, healthcare, government. However, with the increased productivity, flexibility, and effectiveness that computers provide, comes the vulnerability to cyber-attacks where software, or even firmware, gets subtly modified by a hacker. The integration of a Trusted Platform Module (TPM) opts to tackle this issue by aiding in the detection of unauthorized modifications so that devices get remediation as needed. Nonetheless, the use of a TPM is impractical for resource-constrained devices due to power, space and cost limitations. With the recent proliferation of miniaturized devices along with the push towards the Internet-of Things (IoT) there is a need for a lightweight and practical alternative to the TPM. This paper proposes a cost-effective solution that incorporates modest amounts of integrated roots-of-trust logic and supports attestation of the integrity of the device's boot-up state. Our solution leverages crypto-acceleration modules found on many microprocessor and microcontroller based IoT devices nowadays, and introduces little additional overhead. The basic concepts have been validated through implementation on an SoC with an FPGA and a hard microcontroller. We report the validation results and highlight the involved tradeoffs.
2019-01-21
Houmer, M., Hasnaoui, M. L., Elfergougui, A..  2018.  Security Analysis of Vehicular Ad-hoc Networks based on Attack Tree. 2018 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT). :21–26.

Nowadays, Vehicular ad hoc network confronts many challenges in terms of security and privacy, due to the fact that data transmitted are diffused in an open access environment. However, highest of drivers want to maintain their information discreet and protected, and they do not want to share their confidential information. So, the private information of drivers who are distributed in this network must be protected against various threats that may damage their privacy. That is why, confidentiality, integrity and availability are the important security requirements in VANET. This paper focus on security threat in vehicle network especially on the availability of this network. Then we regard the rational attacker who decides to lead an attack based on its adversary's strategy to maximize its own attack interests. Our aim is to provide reliability and privacy of VANET system, by preventing attackers from violating and endangering the network. to ensure this objective, we adopt a tree structure called attack tree to model the attacker's potential attack strategies. Also, we join the countermeasures to the attack tree in order to build attack-defense tree for defending these attacks.

2018-09-28
Tsudik, Gene.  2017.  Security in Personal Genomics: Lest We Forget. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :5–5.
Genomic privacy has attracted much attention from the research community, mainly since its risks are unique and breaches can lead to terrifying leakage of most personal and sensitive information. The much less explored topic of genomic security needs to mitigate threats of the digitized genome being altered by its owner or an outside party, which can have dire consequences, especially, in medical or legal settings. At the same time, many anticipated genomic applications (with varying degrees of trust) require only small amounts of genomic data. Supporting such applications requires a careful balance between security and privacy. Furthermore, genome's size raises performance concerns. We argue that genomic security must be taken seriously and explored as a research topic in its own right. To this end, we discuss the problem space, identify the stakeholders, discuss assumptions about them, and outline several simple approaches based on common cryptographic techniques, including signature variants and authenticated data structures. We also present some extensions and identify opportunities for future research. The main goal of this paper is to highlight the importance of genomic security as a research topic in its own right.
2018-09-12
Zakaria, I., Mustaha, H..  2017.  FADETPM: Novel approach of file assured deletion based on trusted platform module. 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech). :1–4.

Nowadays, the Internet is developed, so that the requirements for on- and offline data storage have increased. Large storage IT projects, are related to large costs and high level of business risk. A storage service provider (SSP) provides computer storage space and management. In addition to that, it offers also back-up and archiving. Despite this, many companies fears security, privacy and integrity of outsourced data. As a solution, File Assured Deletion (FADE) is a system built upon standard cryptographic issues. It aims to guarantee their privacy and integrity, and most importantly, assuredly deleted files to make them unrecoverable to anybody (including those who manage the cloud storage) upon revocations of file access policies, by encrypting outsourced data files. Unfortunately, This system remains weak, in case the key manager's security is compromised. Our work provides a new scheme that aims to improve the security of FADE by using the TPM (Trusted Platform Module) that stores safely keys, passwords and digital certificates.

2018-08-23
Ning, F., Wen, Y., Shi, G., Meng, D..  2017.  Efficient tamper-evident logging of distributed systems via concurrent authenticated tree. 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC). :1–9.
Secure logging as an indispensable part of any secure system in practice is well-understood by both academia and industry. However, providing security for audit logs on an untrusted machine in a large distributed system is still a challenging task. The emergence and wide availability of log management tools prompted plenty of work in the security community that allows clients or auditors to verify integrity of the log data. Most recent solutions to this problem focus on the space-efficiency or public verifiability of forward security. Unfortunately, existing secure audit logging schemes have significant performance limitations that make them impractical for realtime large-scale distributed applications: Existing cryptographic hashing is computationally expensive for logging in task intensive or resource-constrained systems especially to prove individual log events, while Merkle-tree approach has fundamental limitations when face with highly concurrent, large-scale log streams due to its serially appending feature. The verification step of Merkle-tree based approach requiring a logarithmic number of hash computations is becoming a bottleneck to improve the overall performance. There is a huge gap between the flux of log streams collected and the computational efficiency of integrity verification in the large-scale distributed systems. In this work, we develop a novel scheme, performance of which favorably compares with the existing solutions. The performance guarantees that we achieve stem from a novel data structure called concurrent authenticated tree, which allows log events concurrently appending and removes the need to wait for append operations to complete sequentially. We implement a prototype using chameleon hashing based on discrete log and Merkle history tree. A comprehensive experimental evaluation of the proposed and existing approaches is used to validate the analytical models and verify our claims. The results demonstrate that our proposed scheme verifying in a concurrent way is significantly more efficient than the previous tree-based approach.
2018-06-11
Kumar, K. N., Nene, M. J..  2017.  Chip-Based symmetric and asymmetric key generation in hierarchical wireless sensors networks. 2017 International Conference on Inventive Systems and Control (ICISC). :1–6.
Realization of an application using Wireless Sensor Networks (WSNs) using Sensor Nodes (SNs) brings in profound advantages of ad-hoc and flexible network deployments. Implementation of these networks face immense challenges due to short wireless range; along with limited power, storage & computational capabilities of SNs. Also, due to the tiny physical attributes of the SNs in WSNs, they are prone to physical attacks. In the context of WSNs, the physical attacks may range from destroying, lifting, replacing and adding new SNs. The work in this paper addresses the threats induced due to physical attacks and, further proposes a methodology to mitigate it. The methodology incorporates the use of newly proposed secured and efficient symmetric and asymmetric key distribution technique based on the additional commodity hardware Trusted Platform Module (TPM). Further, the paper demonstrates the merits of the proposed methodology. With some additional economical cost for the hardware, the proposed technique can fulfill the security requirement of WSNs, like confidentiality, integrity, authenticity, resilience to attack, key connectivity and data freshness.
2018-05-24
Priya, K., ArokiaRenjit, J..  2017.  Data Security and Confidentiality in Public Cloud Storage by Extended QP Protocol. 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC). :235–240.

Now a day's cloud technology is a new example of computing that pays attention to more computer user, government agencies and business. Cloud technology brought more advantages particularly in every-present services where everyone can have a right to access cloud computing services by internet. With use of cloud computing, there is no requirement for physical servers or hardware that will help the computer system of company, networks and internet services. One of center services offered by cloud technology is storing the data in remote storage space. In the last few years, storage of data has been realized as important problems in information technology. In cloud computing data storage technology, there are some set of significant policy issues that includes privacy issues, anonymity, security, government surveillance, telecommunication capacity, liability, reliability and among others. Although cloud technology provides a lot of benefits, security is the significant issues between customer and cloud. Normally cloud computing technology has more customers like as academia, enterprises, and normal users who have various incentives to go to cloud. If the clients of cloud are academia, security result on computing performance and for this types of clients cloud provider's needs to discover a method to combine performance and security. In this research paper the more significant issue is security but with diverse vision. High performance might be not as dangerous for them as academia. In our paper, we design an efficient secure and verifiable outsourcing protocol for outsourcing data. We develop extended QP problem protocol for storing and outsourcing a data securely. To achieve the data security correctness, we validate the result returned through the cloud by Karush\_Kuhn\_Tucker conditions that are sufficient and necessary for the most favorable solution.

2018-05-09
Luo, H. S., Jiang, R., Pei, B..  2017.  Cryptanalysis and Countermeasures on Dynamic-Hash-Table Based Public Auditing for Secure Cloud Storage. 2017 10th International Symposium on Computational Intelligence and Design (ISCID). 1:33–36.

Cloud storage can provide outsourcing data services for both organizations and individuals. However, cloud storage still faces many challenges, e.g., public integrity auditing, the support of dynamic data, and low computational audit cost. To solve the problems, a number of techniques have been proposed. Recently, Tian et al. proposed a novel public auditing scheme for secure cloud storage based on a new data structure DHT. The authors claimed that their scheme was proven to be secure. Unfortunately, through our security analysis, we find that the scheme suffers from one attack and one security shortage. The attack is that an adversary can forge the data to destroy the correctness of files without being detected. The shortage of the scheme is that the updating operations for data blocks is vulnerable and easy to be modified. Finally, we give our countermeasures to remedy the security problems.

2018-02-27
Schulz, T., Golatowski, F., Timmermann, D..  2017.  Evaluation of a Formalized Encryption Library for Safety-Critical Embedded Systems. 2017 IEEE International Conference on Industrial Technology (ICIT). :1153–1158.

Complex safety-critical devices require dependable communication. Dependability includes confidentiality and integrity as much as safety. Encrypting gateways with demilitarized zones, Multiple Independent Levels of Security architectures and the infamous Air Gap are diverse integration patterns for safety-critical infrastructure. Though resource restricted embedded safety devices still lack simple, certifiable, and efficient cryptography implementations. Following the recommended formal methods approach for safety-critical devices, we have implemented proven cryptography algorithms in the qualified model based language Scade as the Safety Leveraged Implementation of Data Encryption (SLIDE) library. Optimization for the synchronous dataflow language is discussed in the paper. The implementation for public-key based encryption and authentication is evaluated for real-world performance. The feasibility is shown by execution time benchmarks on an industrial safety microcontroller platform running a train control safety application.

2018-02-21
Grgić, K., Kovačevic, Z., Čik, V. K..  2017.  Performance analysis of symmetric block cryptosystems on Android platform. 2017 International Conference on Smart Systems and Technologies (SST). :155–159.

The symmetric block ciphers, which represent a core element for building cryptographic communications systems and protocols, are used in providing message confidentiality, authentication and integrity. Various limitations in hardware and software resources, especially in terminal devices used in mobile communications, affect the selection of appropriate cryptosystem and its parameters. In this paper, an implementation of three symmetric ciphers (DES, 3DES, AES) used in different operating modes are analyzed on Android platform. The cryptosystems' performance is analyzed in different scenarios using several variable parameters: cipher, key size, plaintext size and number of threads. Also, the influence of parallelization supported by multi-core CPUs on cryptosystem performance is analyzed. Finally, some conclusions about the parameter selection for optimal efficiency are given.

Subramanyan, Pramod, Sinha, Rohit, Lebedev, Ilia, Devadas, Srinivas, Seshia, Sanjit A..  2017.  A Formal Foundation for Secure Remote Execution of Enclaves. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2435–2450.

Recent proposals for trusted hardware platforms, such as Intel SGX and the MIT Sanctum processor, offer compelling security features but lack formal guarantees. We introduce a verification methodology based on a trusted abstract platform (TAP), a formalization of idealized enclave platforms along with a parameterized adversary. We also formalize the notion of secure remote execution and present machine-checked proofs showing that the TAP satisfies the three key security properties that entail secure remote execution: integrity, confidentiality and secure measurement. We then present machine-checked proofs showing that SGX and Sanctum are refinements of the TAP under certain parameterizations of the adversary, demonstrating that these systems implement secure enclaves for the stated adversary models.

2018-01-23
Son, Juhyung, Koo, Sungmin, Choi, Jongmoo, Choi, Seong-je, Baek, Seungjae, Jeon, Gwangil, Park, Jun-Hyeok, Kim, Hyoungchun.  2017.  Quantitative Analysis of Measurement Overhead for Integrity Verification. Proceedings of the Symposium on Applied Computing. :1528–1533.

As the use of cloud computing and autonomous computing increases, integrity verification of the software stack used in a system becomes a critical issue. In this paper, we analyze the internal behavior of IMA (Integrity Measurement Architecture), one of the most well-known integrity verification frameworks employed in the Linux kernel. For integrity verification, IMA measures all executables and their configuration files in a trusty manner using TPM (Trust Platform Module). Our analysis reveals that there are two obstacles in IMA, measurement overhead and nondeterminism. To address these problems, we propose two novel techniques, called batch extend and core measurement. The former is a technique that accumulates the measured values of executables/files and extends them into TPM in a batch fashion. The second technique measures some specified executables/files only so that it verifies the core integrity of a system in which a user or a remote party is interested. Real implementation based evaluation shows that our proposal can reduce the booting time from 122 to 23 seconds, while supporting the same integrity verification capability of the default IMA policy.

2018-01-16
Arasu, Arvind, Eguro, Ken, Kaushik, Raghav, Kossmann, Donald, Meng, Pingfan, Pandey, Vineet, Ramamurthy, Ravi.  2017.  Concerto: A High Concurrency Key-Value Store with Integrity. Proceedings of the 2017 ACM International Conference on Management of Data. :251–266.

Verifying the integrity of outsourced data is a classic, well-studied problem. However current techniques have fundamental performance and concurrency limitations for update-heavy workloads. In this paper, we investigate the potential advantages of deferred and batched verification rather than the per-operation verification used in prior work. We present Concerto, a comprehensive key-value store designed around this idea. Using Concerto, we argue that deferred verification preserves the utility of online verification and improves concurrency resulting in orders-of-magnitude performance improvement. On standard benchmarks, the performance of Concerto is within a factor of two when compared to state-of-the-art key-value stores without integrity.

Ferretti, L., Marchetti, M., Colajanni, M..  2017.  Verifiable Delegated Authorization for User-Centric Architectures and an OAuth2 Implementation. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:718–723.

Delegated authorization protocols have become wide-spread to implement Web applications and services, where some popular providers managing people identity information and personal data allow their users to delegate third party Web services to access their data. In this paper, we analyze the risks related to untrusted providers not behaving correctly, and we solve this problem by proposing the first verifiable delegated authorization protocol that allows third party services to verify the correctness of users data returned by the provider. The contribution of the paper is twofold: we show how delegated authorization can be cryptographically enforced through authenticated data structures protocols, we extend the standard OAuth2 protocol by supporting efficient and verifiable delegated authorization including database updates and privileges revocation.

2017-12-28
Liang, X., Zhao, J., Shetty, S., Li, D..  2017.  Towards data assurance and resilience in IoT using blockchain. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :261–266.

Data assurance and resilience are crucial security issues in cloud-based IoT applications. With the widespread adoption of drones in IoT scenarios such as warfare, agriculture and delivery, effective solutions to protect data integrity and communications between drones and the control system have been in urgent demand to prevent potential vulnerabilities that may cause heavy losses. To secure drone communication during data collection and transmission, as well as preserve the integrity of collected data, we propose a distributed solution by utilizing blockchain technology along with the traditional cloud server. Instead of registering the drone itself to the blockchain, we anchor the hashed data records collected from drones to the blockchain network and generate a blockchain receipt for each data record stored in the cloud, reducing the burden of moving drones with the limit of battery and process capability while gaining enhanced security guarantee of the data. This paper presents the idea of securing drone data collection and communication in combination with a public blockchain for provisioning data integrity and cloud auditing. The evaluation shows that our system is a reliable and distributed system for drone data assurance and resilience with acceptable overhead and scalability for a large number of drones.

2017-12-20
Dong, B., Wang, H.(.  2017.  EARRING: Efficient Authentication of Outsourced Record Matching. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :225–234.

Cloud computing enables the outsourcing of big data analytics, where a third-party server is responsible for data management and processing. In this paper, we consider the outsourcing model in which a third-party server provides record matching as a service. In particular, given a target record, the service provider returns all records from the outsourced dataset that match the target according to specific distance metrics. Identifying matching records in databases plays an important role in information integration and entity resolution. A major security concern of this outsourcing paradigm is whether the service provider returns the correct record matching results. To solve the problem, we design EARRING, an Efficient Authentication of outsouRced Record matchING framework. EARRING requires the service provider to construct the verification object (VO) of the record matching results. From the VO, the client is able to catch any incorrect result with cheap computational cost. Experiment results on real-world datasets demonstrate the efficiency of EARRING.

2017-12-12
Contreras, G. K., Nahiyan, A., Bhunia, S., Forte, D., Tehranipoor, M..  2017.  Security vulnerability analysis of design-for-test exploits for asset protection in SoCs. 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). :617–622.

SoCs implementing security modules should be both testable and secure. Oversights in a design's test structure could expose internal modules creating security vulnerabilities during test. In this paper, for the first time, we propose a novel automated security vulnerability analysis framework to identify violations of confidentiality, integrity, and availability policies caused by test structures and designer oversights during SoC integration. Results demonstrate existing information leakage vulnerabilities in implementations of various encryption algorithms and secure microprocessors. These can be exploited to obtain secret keys, control finite state machines, or gain unauthorized access to memory read/write functions.

Taylor, J. M., Sharif, H. R..  2017.  Security challenges and methods for protecting critical infrastructure cyber-physical systems. 2017 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT). :1–6.

Cyber-Physical Systems (CPS) represent a fundamental link between information technology (IT) systems and the devices that control industrial production and maintain critical infrastructure services that support our modern world. Increasingly, the interconnections among CPS and IT systems have created exploitable security vulnerabilities due to a number of factors, including a legacy of weak information security applications on CPS and the tendency of CPS operators to prioritize operational availability at the expense of integrity and confidentiality. As a result, CPS are subject to a number of threats from cyber attackers and cyber-physical attackers, including denial of service and even attacks against the integrity of the data in the system. The effects of these attacks extend beyond mere loss of data or the inability to access information system services. Attacks against CPS can cause physical damage in the real world. This paper reviews the challenges of providing information assurance services for CPS that operate critical infrastructure systems and industrial control systems. These methods are thorough measures to close integrity and confidentiality gaps in CPS and processes to highlight the security risks that remain. This paper also outlines approaches to reduce the overhead and complexity for security methods, as well as examine novel approaches, including covert communications channels, to increase CPS security.

2017-11-20
Wei, Zhuo, Yan, Zheng, Wu, Yongdong, Deng, Robert Huijie.  2016.  Trustworthy Authentication on Scalable Surveillance Video with Background Model Support. ACM Trans. Multimedia Comput. Commun. Appl.. 12:64:1–64:20.

H.264/SVC (Scalable Video Coding) codestreams, which consist of a single base layer and multiple enhancement layers, are designed for quality, spatial, and temporal scalabilities. They can be transmitted over networks of different bandwidths and seamlessly accessed by various terminal devices. With a huge amount of video surveillance and various devices becoming an integral part of the security infrastructure, the industry is currently starting to use the SVC standard to process digital video for surveillance applications such that clients with different network bandwidth connections and display capabilities can seamlessly access various SVC surveillance (sub)codestreams. In order to guarantee the trustworthiness and integrity of received SVC codestreams, engineers and researchers have proposed several authentication schemes to protect video data. However, existing algorithms cannot simultaneously satisfy both efficiency and robustness for SVC surveillance codestreams. Hence, in this article, a highly efficient and robust authentication scheme, named TrustSSV (Trust Scalable Surveillance Video), is proposed. Based on quality/spatial scalable characteristics of SVC codestreams, TrustSSV combines cryptographic and content-based authentication techniques to authenticate the base layer and enhancement layers, respectively. Based on temporal scalable characteristics of surveillance codestreams, TrustSSV extracts, updates, and authenticates foreground features for each access unit dynamically with background model support. Using SVC test sequences, our experimental results indicate that the scheme is able to distinguish between content-preserving and content-changing manipulations and to pinpoint tampered locations. Compared with existing schemes, the proposed scheme incurs very small computation and communication costs.

2017-09-15
Salam, Md Iftekhar, Wong, Kenneth Koon-Ho, Bartlett, Harry, Simpson, Leonie, Dawson, Ed, Pieprzyk, Josef.  2016.  Finding State Collisions in the Authenticated Encryption Stream Cipher ACORN. Proceedings of the Australasian Computer Science Week Multiconference. :36:1–36:10.

This paper analyzes the authenticated encryption algorithm ACORN, a candidate in the CAESAR cryptographic competition. We identify weaknesses in the state update function of ACORN which result in collisions in the internal state of ACORN. This paper shows that for a given set of key and initialization vector values we can construct two distinct input messages which result in a collision in the ACORN internal state. Using a standard PC the collision can be found almost instantly when the secret key is known. This flaw can be used by a message sender to create a forged message which will be accepted as legitimate.

2017-08-02
Amir, Mohammad, Nagar, Dhanroop Mal, Baghela, Vinay.  2016.  Secure DSR Routing Protocol Based on Homomorphic Digital Signature. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :84:1–84:5.

Mobile Ad-Hoc Network is a wireless networking exemplar of mobile hosts which are connected by wireless links without usual routing infrastructure and link fixed routers. Dynamic Source Routing (DSR) is one of the extensively used routing protocol for packet transfer from source to destination. It relies on maintaining most recent information, for which, each adhoc node maintains hop count and sequence number field. They are vulnerable to security attacks due to their mutable nature. Analogously, routing updates are transmitted in clear text, which again poses a security hazard. In this paper, we will propose an improved version of DSR routing protocol using Homomorphic Encryption Scheme which prevents pollution attack and accomplishes in maintaining Integrity Security Standard by following minimum hop count path. HDSR routing scheme is evaluated by simulation and results show that improved throughput and ETE delay can be obtained.

2017-02-23
J. Shen, S. Ji, J. Shen, Z. Fu, J. Wang.  2015.  "Auditing Protocols for Cloud Storage: A Survey". 2015 First International Conference on Computational Intelligence Theory, Systems and Applications (CCITSA). :222-227.

So far, cloud storage has been accepted by an increasing number of people, which is not a fresh notion any more. It brings cloud users a lot of conveniences, such as the relief of local storage and location independent access. Nevertheless, the correctness and completeness as well as the privacy of outsourced data are what worry could users. As a result, most people are unwilling to store data in the cloud, in case that the sensitive information concerning something important is disclosed. Only when people feel worry-free, can they accept cloud storage more easily. Certainly, many experts have taken this problem into consideration, and tried to solve it. In this paper, we survey the solutions to the problems concerning auditing in cloud computing and give a comparison of them. The methods and performances as well as the pros and cons are discussed for the state-of-the-art auditing protocols.