Visible to the public Biblio

Filters: Keyword is Voting  [Clear All Filters]
2023-01-13
Peng, Chunying, Xu, Haixia, Li, Peili.  2022.  Redactable Blockchain Using Lattice-based Chameleon Hash Function. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :94–98.
Blockchain as a tamper-proof, non-modifiable and traceable distributed ledger technology has received extensive attention. Although blockchain's immutability provides security guarantee, it prevents the development of new blockchain technology. As we think, there are several arguments to prefer a controlled modifiable blockchain, from the possibility to cancel the transaction and necessity to remove the illicit or harmful documents, to the ability to support the scalability of blockchain. Meanwhile, the rapid development of quantum technology has made the establishment of post-quantum cryptosystems an urgent need. In this paper, we put forward the first lattice-based redactable consortium blockchain scheme that makes it possible to rewrite or repeal the content of any blocks. Our approach uses a consensus-based election and lattice-based chameleon hash function (Cash and Hofheinz etc. EUROCRYPT 2010). With knowledge of secret trapdoor, the participant could find the hash collisions efficiently. And each member of the consortium blockchain has the right to edit the history.
2023-01-05
Ranganathan, Sathishkumar, Mariappan, Muralindran, Muthukaruppan, Karthigayan.  2022.  Efficient Distributed Consensus Algorithm For Swarm Robotic. 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). :1–6.
Swarm robotics is a network based multi-device system designed to achieve shared objectives in a synchronized way. This system is widely used in industries like farming, manufacturing, and defense applications. In recent implementations, swarm robotics is integrated with Blockchain based networks to enhance communication, security, and decentralized decision-making capabilities. As most of the current blockchain applications are based on complex consensus algorithms, every individual robot in the swarm network requires high computing power to run these complex algorithms. Thus, it is a challenging task to achieve consensus between the robots in the network. This paper will discuss the details of designing an effective consensus algorithm that meets the requirements of swarm robotics network.
2022-11-08
Drakopoulos, Georgios, Giannoukou, Ioanna, Mylonas, Phivos, Sioutas, Spyros.  2020.  A Graph Neural Network For Assessing The Affective Coherence Of Twitter Graphs. 2020 IEEE International Conference on Big Data (Big Data). :3618–3627.
Graph neural networks (GNNs) is an emerging class of iterative connectionist models taking full advantage of the interaction patterns in an underlying domain. Depending on their configuration GNNs aggregate local state information to obtain robust estimates of global properties. Since graphs inherently represent high dimensional data, GNNs can effectively perform dimensionality reduction for certain aggregator selections. One such task is assigning sentiment polarity labels to the vertices of a large social network based on local ground truth state vectors containing structural, functional, and affective attributes. Emotions have been long identified as key factors in the overall social network resiliency and determining such labels robustly would be a major indicator of it. As a concrete example, the proposed methodology has been applied to two benchmark graphs obtained from political Twitter with topic sampling regarding the Greek 1821 Independence Revolution and the US 2020 Presidential Elections. Based on the results recommendations for researchers and practitioners are offered.
2022-04-25
Khichi, Manish, Kumar Yadav, Rajesh.  2021.  A Threat of Deepfakes as a Weapon on Digital Platform and their Detection Methods. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :01–08.
Advances in machine learning, deep learning, and Artificial Intelligence(AI) allows people to exchange other people's faces and voices in videos to make it look like what they did or say whatever you want to say. These videos and photos are called “deepfake” and are getting more complicated every day and this has lawmakers worried. This technology uses machine learning technology to provide computers with real data about images, so that we can make forgeries. The creators of Deepfake use artificial intelligence and machine learning algorithms to mimic the work and characteristics of real humans. It differs from counterfeit traditional media because it is difficult to identify. As In the 2020 elections loomed, AI-generated deepfakes were hit the news cycle. DeepFakes threatens facial recognition and online content. This deception can be dangerous, because if used incorrectly, this technique can be abused. Fake video, voice, and audio clips can do enormous damage. This paper examines the algorithms used to generate deepfakes as well as the methods proposed to detect them. We go through the threats, research patterns, and future directions for deepfake technologies in detail. This research provides a detailed description of deep imitation technology and encourages the creation of new and more powerful methods to deal with increasingly severe deep imitation by studying the history of deep imitation.
2022-04-01
Nashrudin, Muhamad Ridhwan Bin, Nasser, Abdullah B., Abdul-Qawy, Antar Shaddad H..  2021.  V-CRYPT: A Secure Visual Cryptography System. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :568–573.
Nowadays, peoples are very concerned about their data privacy. Hence, all the current security methods should be improved to stay relevant in this fast-growing technology world. Visual Cryptography (VC) is a cryptographic technique that using the image processing method. The implementation of VC can be varying and flexible to be applied to the system that requires an extra security precaution as it is one of the effective solutions in securing the data exchange between two or more parties. The main purpose of the development of V-CRYPT System is to improve the current VC technique and make it more complex in the encryption and decryption process. V-CRYPT system will let the user enter the key, then select the image that they want to encrypt, and the system will split the image into four shares: share0, share1, share2, share3. Each pixel of the image will be splatted into a smaller block of subpixels in each of the four shares and encrypted as two subpixels in each of the shares. The decryption will work only when the user selects all the shares, and the correct text key is entered. The system will superimpose all the shares and producing one perfect image. If the incorrect key is entered, the resulted image will be unidentified. The results show that V- CRYPT is a valuable alternative to existing methods where its security level is higher in terms of adding a secure key and complexity.
2022-02-22
Ramalingam, M., Saranya, D., ShankarRam, R..  2021.  An Efficient and Effective Blockchain-based Data Aggregation for Voting System. 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—4.
Blockchain is opening up new avenues for the development of new sorts of digital services. In this article, we'll employ the transparent Blockchain method to propose a system for collecting data from many sources and databases for use in local and national elections. The Blockchain-based system will be safe, trustworthy, and private. It will assist to know the overall count of the candidates who participated and it functions in the same way as people's faith in their governments does. Blockchain technology is the one that handles the actual vote. We use the secure hash algorithm for resolving this problem and tried to bring a solution through the usage of this booming technology. A centralized database in a blockchain system keeps track of the secure electronic interactions of users in a peer-to-peer network.
2021-12-21
Kowalski, Dariusz R., Mosteiro, Miguel A..  2021.  Time and Communication Complexity of Leader Election in Anonymous Networks. 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS). :449–460.
We study the problem of randomized Leader Election in synchronous distributed networks with indistinguishable nodes. We consider algorithms that work on networks of arbitrary topology in two settings, depending on whether the size of the network, i.e., the number of nodes \$n\$, is known or not. In the former setting, we present a new Leader Election protocol that improves over previous work by lowering message complexity and making it close to a lower bound by a factor in \$$\backslash$widetildeO($\backslash$sqrtt\_mix$\backslash$sqrt$\backslash$Phi)\$, where $\Phi$ is the conductance and \textsubscriptmix is the mixing time of the network graph. We then show that lacking the network size no Leader Election algorithm can guarantee that the election is final with constant probability, even with unbounded communication. Hence, we further classify the problem as Leader Election (the classic one, requiring knowledge of \$n\$ - as is our first protocol) or Revocable Leader Election, and present a new polynomial time and message complexity Revocable Leader Election algorithm in the setting without knowledge of network size. We analyze time and message complexity of our protocols in the CONGEST model of communication.
2021-11-08
Brown, Brandon, Richardson, Alexicia, Smith, Marcellus, Dozier, Gerry, King, Michael C..  2020.  The Adversarial UFP/UFN Attack: A New Threat to ML-based Fake News Detection Systems? 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :1523–1527.
In this paper, we propose two new attacks: the Adversarial Universal False Positive (UFP) Attack and the Adversarial Universal False Negative (UFN) Attack. The objective of this research is to introduce a new class of attack using only feature vector information. The results show the potential weaknesses of five machine learning (ML) classifiers. These classifiers include k-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forrest (RF), a Support Vector Machine (SVM) with a Radial Basis Function (RBF) Kernel, and XGBoost (XGB).
2020-12-14
Boualouache, A., Soua, R., Engel, T..  2020.  SDN-based Misbehavior Detection System for Vehicular Networks. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
Vehicular networks are vulnerable to a variety of internal attacks. Misbehavior Detection Systems (MDS) are preferred over the cryptography solutions to detect such attacks. However, the existing misbehavior detection systems are static and do not adapt to the context of vehicles. To this end, we exploit the Software-Defined Networking (SDN) paradigm to propose a context-aware MDS. Based on the context, our proposed system can tune security parameters to provide accurate detection with low false positives. Our system is Sybil attack-resistant and compliant with vehicular privacy standards. The simulation results show that, under different contexts, our system provides a high detection ratio and low false positives compared to a static MDS.
2020-08-03
Gopalakrishnan, S., Rajesh, A..  2019.  Cluster based Intrusion Detection System for Mobile Ad-hoc Network. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:11–15.

Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.

2020-04-13
Heiss, Jonathan, Eberhardt, Jacob, Tai, Stefan.  2019.  From Oracles to Trustworthy Data On-Chaining Systems. 2019 IEEE International Conference on Blockchain (Blockchain). :496–503.
Many blockchain transactions require blockchain-external data sources to provide data. Oracle systems have been proposed as a link between blockchains and blockchain-external resources. However, these Oracle systems vary greatly in assumptions and applicability and each system addresses the challenge of data on-chaining partly. We argue that Data On-chaining must be done in a trustworthy manner and, as a first contribution, define a set of key requirements for Trustworthy Data On-chaining. Further, we provide an in-depth assessment and comparison of state-of-the-art Oracle systems with regards to these requirements. This differentiation pinpoints the need for a uniform understanding of and directions for future research on Trustworthy Data On-chaining.
2019-02-08
Bartolucci, Silvia, Bernat, Pauline, Joseph, Daniel.  2018.  SHARVOT: Secret SHARe-Based VOTing on the Blockchain. Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. :30-34.

Recently, there has been a growing interest in using online technologies to design protocols for secure electronic voting. The main challenges include vote privacy and anonymity, ballot irrevocability and transparency throughout the vote counting process. The introduction of the blockchain as a basis for cryptocurrency protocols, provides for the exploitation of the immutability and transparency properties of these distributed ledgers. In this paper, we discuss possible uses of the blockchain technology to implement a secure and fair voting system. In particular, we introduce a secret share-based voting system on the blockchain, the so-called SHARVOT protocol1. Our solution uses Shamir's Secret Sharing to enable on-chain, i.e. within the transactions script, votes submission and winning candidate determination. The protocol is also using a shuffling technique, Circle Shuffle, to de-link voters from their submissions.

2018-06-20
Patil, S. U..  2017.  Gray hole attack detection in MANETs. 2017 2nd International Conference for Convergence in Technology (I2CT). :20–26.

Networking system does not liable on static infrastructure that interconnects various nodes in identical broadcast range dynamically called as Mobile Ad-hoc Network. A Network requires adaptive connectivity due to this data transmission rate increased. In this paper, we designed developed a dynamic cluster head selection to detect gray hole attack in MANETs on the origin of battery power. MANETs has dynamic nodes so we delivered novel way to choose cluster head by self-stabilizing election algorithm followed by MD5 algorithm for security purposes. The Dynamic cluster based intrusion revealing system to detect gray hole attack in MANET. This Architecture enhanced performance in terms of Packet delivery ratio and throughput due to dynamic cluster based IDS, associating results of existing system with proposed system, throughput of network increased, end to end delay and routing overhead less compared with existing system due to gray hole nodes in the MANET. The future work can be prolonged by using security algorithm AES and MD6 and also by including additional node to create large network by comparing multiple routing protocol in MANETs.