Visible to the public Biblio

Filters: Keyword is nonsignature malware detection schemes  [Clear All Filters]
2018-06-20
Shafiq, Z., Liu, A..  2017.  A graph theoretic approach to fast and accurate malware detection. 2017 IFIP Networking Conference (IFIP Networking) and Workshops. :1–9.

Due to the unavailability of signatures for previously unknown malware, non-signature malware detection schemes typically rely on analyzing program behavior. Prior behavior based non-signature malware detection schemes are either easily evadable by obfuscation or are very inefficient in terms of storage space and detection time. In this paper, we propose GZero, a graph theoretic approach fast and accurate non-signature malware detection at end hosts. GZero it is effective while being efficient in terms of both storage space and detection time. We conducted experiments on a large set of both benign software and malware. Our results show that GZero achieves more than 99% detection rate and a false positive rate of less than 1%, with less than 1 second of average scan time per program and is relatively robust to obfuscation attacks. Due to its low overheads, GZero can complement existing malware detection solutions at end hosts.