Visible to the public Biblio

Filters: Keyword is malware files  [Clear All Filters]
2020-10-29
Vi, Bao Ngoc, Noi Nguyen, Huu, Nguyen, Ngoc Tran, Truong Tran, Cao.  2019.  Adversarial Examples Against Image-based Malware Classification Systems. 2019 11th International Conference on Knowledge and Systems Engineering (KSE). :1—5.

Malicious software, known as malware, has become urgently serious threat for computer security, so automatic mal-ware classification techniques have received increasing attention. In recent years, deep learning (DL) techniques for computer vision have been successfully applied for malware classification by visualizing malware files and then using DL to classify visualized images. Although DL-based classification systems have been proven to be much more accurate than conventional ones, these systems have been shown to be vulnerable to adversarial attacks. However, there has been little research to consider the danger of adversarial attacks to visualized image-based malware classification systems. This paper proposes an adversarial attack method based on the gradient to attack image-based malware classification systems by introducing perturbations on resource section of PE files. The experimental results on the Malimg dataset show that by a small interference, the proposed method can achieve success attack rate when challenging convolutional neural network malware classifiers.

2020-10-26
Sethi, Kamalakanta, Kumar, Rahul, Sethi, Lingaraj, Bera, Padmalochan, Patra, Prashanta Kumar.  2019.  A Novel Machine Learning Based Malware Detection and Classification Framework. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–4.
As time progresses, new and complex malware types are being generated which causes a serious threat to computer systems. Due to this drastic increase in the number of malware samples, the signature-based malware detection techniques cannot provide accurate results. Different studies have demonstrated the proficiency of machine learning for the detection and classification of malware files. Further, the accuracy of these machine learning models can be improved by using feature selection algorithms to select the most essential features and reducing the size of the dataset which leads to lesser computations. In this paper, we have developed a machine learning based malware analysis framework for efficient and accurate malware detection and classification. We used Cuckoo sandbox for dynamic analysis which executes malware in an isolated environment and generates an analysis report based on the system activities during execution. Further, we propose a feature extraction and selection module which extracts features from the report and selects the most important features for ensuring high accuracy at minimum computation cost. Then, we employ different machine learning algorithms for accurate detection and fine-grained classification. Experimental results show that we got high detection and classification accuracy in comparison to the state-of-the-art approaches.
2018-06-20
Pranamulia, R., Asnar, Y., Perdana, R. S..  2017.  Profile hidden Markov model for malware classification \#x2014; usage of system call sequence for malware classification. 2017 International Conference on Data and Software Engineering (ICoDSE). :1–5.

Malware technology makes it difficult for malware analyst to detect same malware files with different obfuscation technique. In this paper we are trying to tackle that problem by analyzing the sequence of system call from an executable file. Malware files which actually are the same should have almost identical or at least a similar sequence of system calls. In this paper, we are going to create a model for each malware class consists of malwares from different families based on its sequence of system calls. Method/algorithm that's used in this paper is profile hidden markov model which is a very well-known tool in the biological informatics field for comparing DNA and protein sequences. Malware classes that we are going to build are trojan and worm class. Accuracy for these classes are pretty high, it's above 90% with also a high false positive rate around 37%.