Visible to the public Biblio

Filters: Keyword is Telephony  [Clear All Filters]
2021-04-08
Dinh, N., Tran, M., Park, Y., Kim, Y..  2020.  An Information-centric NFV-based System Implementation for Disaster Management Services. 2020 International Conference on Information Networking (ICOIN). :807–810.
When disasters occur, they not only affect the human life. Therefore, communication in disaster management is very important. During the disaster recovery phase, the network infrastructure may be partially fragmented and mobile rescue operations may involve many teams with different roles which can dynamically change. Therefore, disaster management services require high flexibility both in terms of network infrastructure management and rescue group communication. Existing studies have shown that IP-based or traditional telephony solutions are not well-suited to deal with such flexible group communication and network management due to their connection-oriented communication, no built-in support for mobile devices, and no mechanism for network fragmentation. Recent studies show that information-centric networking offers scalable and flexible communication based on its name-based interest-oriented communication approach. However, considering the difficulty of deploying a new service on the existing network, the programmability and virtualization of the network are required. This paper presents our implementation of an information-centric disaster management system based on network function virtualization (vICSNF). We show a proof-of-concept system with a case study for Seoul disaster management services. The system achieves flexibility both in terms of network infrastructure management and rescue group communication. Obtained testbed results show that vICSNF achieves a low communication overhead compared to the IP-based approach and the auto-configuration of vICSNFs enables the quick deployment for disaster management services in disaster scenarios.
2018-07-06
Du, Xiaojiang.  2004.  Using k-nearest neighbor method to identify poison message failure. IEEE Global Telecommunications Conference, 2004. GLOBECOM '04. 4:2113–2117Vol.4.

Poison message failure is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks. The poison message failure can propagate in the network and cause an unstable network. We apply a machine learning, data mining technique in the network fault management area. We use the k-nearest neighbor method to identity the poison message failure. We also propose a "probabilistic" k-nearest neighbor method which outputs a probability distribution about the poison message. Through extensive simulations, we show that the k-nearest neighbor method is very effective in identifying the responsible message type.