Visible to the public Biblio

Filters: Keyword is Inference Detection  [Clear All Filters]
2022-03-23
Singhal, Abhinav, Maan, Akash, Chaudhary, Daksh, Vishwakarma, Dinesh.  2021.  A Hybrid Machine Learning and Data Mining Based Approach to Network Intrusion Detection. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :312–318.
This paper outlines an approach to build an Intrusion detection system for a network interface device. This research work has developed a hybrid intrusion detection system which involves various machine learning techniques along with inference detection for a comparative analysis. It is explained in 2 phases: Training (Model Training and Inference Network Building) and Detection phase (Working phase). This aims to solve all the current real-life problem that exists in machine learning algorithms as machine learning techniques are stiff they have their respective classification region outside which they cease to work properly. This paper aims to provide the best working machine learning technique out of the many used. The machine learning techniques used in comparative analysis are Decision Tree, Naïve Bayes, K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) along with NSLKDD dataset for testing and training of our Network Intrusion Detection Model. The accuracy recorded for Decision Tree, Naïve Bayes, K-Nearest Neighbors (KNN) and Support Vector Machines(SVM) respectively when tested independently are 98.088%, 82.971%, 95.75%, 81.971% and when tested with inference detection model are 98.554%, 66.687%, 97.605%, 93.914%. Therefore, it can be concluded that our inference detection model helps in improving certain factors which are not detected using conventional machine learning techniques.
2015-04-30
Myalapalli, V.K., Chakravarthy, A.S.N..  2014.  A unified model for cherishing privacy in database system an approach to overhaul vulnerabilities. Networks Soft Computing (ICNSC), 2014 First International Conference on. :263-266.

Privacy is the most anticipated aspect in many perspectives especially with sensitive data and the database is being targeted incessantly for vulnerability. The database must be persistently monitored for ensuring comprehensive security. The proposed model is intended to cherish the database privacy by thwarting intrusions and inferences. The Database Static protection and Intrusion Tolerance Subsystem proposed in the architecture bolster this practice. This paper enunciates Privacy Cherished Database architecture model and how it achieves security under sundry circumstances.

Myalapalli, V.K., Chakravarthy, A.S.N..  2014.  A unified model for cherishing privacy in database system an approach to overhaul vulnerabilities. Networks Soft Computing (ICNSC), 2014 First International Conference on. :263-266.

Privacy is the most anticipated aspect in many perspectives especially with sensitive data and the database is being targeted incessantly for vulnerability. The database must be persistently monitored for ensuring comprehensive security. The proposed model is intended to cherish the database privacy by thwarting intrusions and inferences. The Database Static protection and Intrusion Tolerance Subsystem proposed in the architecture bolster this practice. This paper enunciates Privacy Cherished Database architecture model and how it achieves security under sundry circumstances.

Myalapalli, V.K., Chakravarthy, A.S.N..  2014.  A unified model for cherishing privacy in database system an approach to overhaul vulnerabilities. Networks Soft Computing (ICNSC), 2014 First International Conference on. :263-266.

Privacy is the most anticipated aspect in many perspectives especially with sensitive data and the database is being targeted incessantly for vulnerability. The database must be persistently monitored for ensuring comprehensive security. The proposed model is intended to cherish the database privacy by thwarting intrusions and inferences. The Database Static protection and Intrusion Tolerance Subsystem proposed in the architecture bolster this practice. This paper enunciates Privacy Cherished Database architecture model and how it achieves security under sundry circumstances.