Biblio
Current technologies to include cloud computing, social networking, mobile applications and crowd and synthetic intelligence, coupled with the explosion in storage and processing power, are evolving massive-scale marketplaces for a wide variety of resources and services. They are also enabling unprecedented forms and levels of collaborations among human and machine entities. In this new era, trust remains the keystone of success in any relationship between two or more parties. A primary challenge is to establish and manage trust in environments where massive numbers of consumers, providers and brokers are largely autonomous with vastly diverse requirements, capabilities, and trust profiles. Most contemporary trust management solutions are oblivious to diversities in trustors' requirements and contexts, utilize direct or indirect experiences as the only form of trust computations, employ hardcoded trust computations and marginally consider collaboration in trust management. We surmise the need for reference architecture for trust management to guide the development of a wide spectrum of trust management systems. In our previous work, we presented a preliminary reference architecture for trust management which provides customizable and reconfigurable trust management operations to accommodate varying levels of diversity and trust personalization. In this paper, we present a comprehensive taxonomy for trust management and extend our reference architecture to feature collaboration as a first-class object. Our goal is to promote the development of new collaborative trust management systems, where various trust management operations would involve collaborating entities. Using the proposed architecture, we implemented a collaborative personalized trust management system. Simulation results demonstrate the effectiveness and efficiency of our system.
Trust management issue in cloud domain has been a persistent research topic discussed among scholars. Similar issue is bound to occur in the surfacing fog domain. Although fog and cloud are relatively similar, evaluating trust in fog domain is more challenging than in cloud. Fog's high mobility support, distributive nature, and closer distance to end user means that they are likely to operate in vulnerable environments. Unlike cloud, fog has little to no human intervention, and lack of redundancy. Hence, it could experience downtime at any given time. Thus it is harder to trust fogs given their unpredictable status. These distinguishing factors, combined with the existing factors used for trust evaluation in cloud can be used as metrics to evaluate trust in fog. This paper discusses a use case of a campus scenario with several fog servers, and the metrics used in evaluating the trustworthiness of the fog servers. While fuzzy logic method is used to evaluate the trust, the contribution of this study is the identification of fuzzy logic configurations that could alter the trust value of a fog.
In theory, remote attestation is a powerful primitive for building distributed systems atop untrusting peers. Unfortunately, the canonical attestation framework defined by the Trusted Computing Group is insufficient to express rich contextual relationships between client-side software components. Thus, attestors and verifiers must rely on ad-hoc mechanisms to handle real-world attestation challenges like attestors that load executables in nondeterministic orders, or verifiers that require attestors to track dynamic information flows between attestor-side components. In this paper, we survey these practical attestation challenges. We then describe a new attestation framework, named Cobweb, which handles these challenges. The key insight is that real-world attestation is a graph problem. An attestation message is a graph in which each vertex is a software component, and has one or more labels, e.g., the hash value of the component, or the raw file data, or a signature over that data. Each edge in an attestation graph is a contextual relationship, like the passage of time, or a parent/child fork() relationship, or a sender/receiver IPC relationship. Cobweb's verifier-side policies are graph predicates which analyze contextual relationships. Experiments with real, complex software stacks demonstrate that Cobweb's abstractions are generic and can support a variety of real-world policies.
Logic locking has been conceived as a promising proactive defense strategy against intellectual property (IP) piracy, counterfeiting, hardware Trojans, reverse engineering, and overbuilding attacks. Yet, various attacks that use a working chip as an oracle have been launched on logic locking to successfully retrieve its secret key, undermining the defense of all existing locking techniques. In this paper, we propose stripped-functionality logic locking (SFLL), which strips some of the functionality of the design and hides it in the form of a secret key(s), thereby rendering on-chip implementation functionally different from the original one. When loaded onto an on-chip memory, the secret keys restore the original functionality of the design. Through security-aware synthesis that creates a controllable mismatch between the reverse-engineered netlist and original design, SFLL provides a quantifiable and provable resilience trade-off between all known and anticipated attacks. We demonstrate the application of SFLL to large designs (textgreater100K gates) using a computer-aided design (CAD) framework that ensures attaining the desired security level at minimal implementation cost, 8%, 5%, and 0.5% for area, power, and delay, respectively. In addition to theoretical proofs and simulation confirmation of SFLL's security, we also report results from the silicon implementation of SFLL on an ARM Cortex-M0 microprocessor in 65nm technology.