Biblio
Current technologies to include cloud computing, social networking, mobile applications and crowd and synthetic intelligence, coupled with the explosion in storage and processing power, are evolving massive-scale marketplaces for a wide variety of resources and services. They are also enabling unprecedented forms and levels of collaborations among human and machine entities. In this new era, trust remains the keystone of success in any relationship between two or more parties. A primary challenge is to establish and manage trust in environments where massive numbers of consumers, providers and brokers are largely autonomous with vastly diverse requirements, capabilities, and trust profiles. Most contemporary trust management solutions are oblivious to diversities in trustors' requirements and contexts, utilize direct or indirect experiences as the only form of trust computations, employ hardcoded trust computations and marginally consider collaboration in trust management. We surmise the need for reference architecture for trust management to guide the development of a wide spectrum of trust management systems. In our previous work, we presented a preliminary reference architecture for trust management which provides customizable and reconfigurable trust management operations to accommodate varying levels of diversity and trust personalization. In this paper, we present a comprehensive taxonomy for trust management and extend our reference architecture to feature collaboration as a first-class object. Our goal is to promote the development of new collaborative trust management systems, where various trust management operations would involve collaborating entities. Using the proposed architecture, we implemented a collaborative personalized trust management system. Simulation results demonstrate the effectiveness and efficiency of our system.
Although current Internet operations generate voluminous data, they remain largely oblivious of traffic data semantics. This poses many inefficiencies and challenges due to emergent or anomalous behavior impacting the vast array of Internet elements such as services and protocols. In this paper, we propose a Data Semantics Management System (DSMS) for learning Internet traffic data semantics to enable smarter semantics- driven networking operations. We extract networking semantics and build and utilize a dynamic ontology of network concepts to better recognize and act upon emergent or abnormal behavior. Our DSMS utilizes: (1) Latent Dirichlet Allocation algorithm (LDA) for latent features extraction and semantics reasoning; (2) big tables as a cloud-like data storage technique to maintain large-scale data; and (3) Locality Sensitive Hashing algorithm (LSH) for reducing data dimensionality. Our preliminary evaluation using real Internet traffic shows the efficacy of DSMS for learning behavior of normal and abnormal traffic data and for accurately detecting anomalies at low cost.