Visible to the public Biblio

Filters: Keyword is languages  [Clear All Filters]
2017-05-30
Amir-Mohammadian, Sepehr, Skalka, Christian.  2016.  In-Depth Enforcement of Dynamic Integrity Taint Analysis. Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security. :43–56.

Dynamic taint analysis can be used as a defense against low-integrity data in applications with untrusted user interfaces. An important example is defense against XSS and injection attacks in programs with web interfaces. Data sanitization is commonly used in this context, and can be treated as a precondition for endorsement in a dynamic integrity taint analysis. However, sanitization is often incomplete in practice. We develop a model of dynamic integrity taint analysis for Java that addresses imperfect sanitization with an in-depth approach. To avoid false positives, results of sanitization are endorsed for access control (aka prospective security), but are tracked and logged for auditing and accountability (aka retrospective security). We show how this heterogeneous prospective/retrospective mechanism can be specified as a uniform policy, separate from code. We then use this policy to establish correctness conditions for a program rewriting algorithm that instruments code for the analysis. The rewriting itself is a model of existing, efficient Java taint analysis tools.

2015-04-30
Fonseca, J., Seixas, N., Vieira, M., Madeira, H..  2014.  Analysis of Field Data on Web Security Vulnerabilities. Dependable and Secure Computing, IEEE Transactions on. 11:89-100.

Most web applications have critical bugs (faults) affecting their security, which makes them vulnerable to attacks by hackers and organized crime. To prevent these security problems from occurring it is of utmost importance to understand the typical software faults. This paper contributes to this body of knowledge by presenting a field study on two of the most widely spread and critical web application vulnerabilities: SQL Injection and XSS. It analyzes the source code of security patches of widely used web applications written in weak and strong typed languages. Results show that only a small subset of software fault types, affecting a restricted collection of statements, is related to security. To understand how these vulnerabilities are really exploited by hackers, this paper also presents an analysis of the source code of the scripts used to attack them. The outcomes of this study can be used to train software developers and code inspectors in the detection of such faults and are also the foundation for the research of realistic vulnerability and attack injectors that can be used to assess security mechanisms, such as intrusion detection systems, vulnerability scanners, and static code analyzers.