Visible to the public Biblio

Filters: Keyword is Optical resonators  [Clear All Filters]
2021-08-31
Murai, Toshiya, Shoji, Yuya, Nishiyama, Nobuhiko, Mizumoto, Tetsuya.  2020.  Magneto-Optical Isolator and Self-Holding Optical Switch Integrated with Thin-Film Magnet. 2020 Conference on Lasers and Electro-Optics (CLEO). :1–2.
Novel magneto-optical isolator and self-holding optical switch with an a-Si:H microring resonator are demonstrated. The devices are driven by the remanence of integrated thin-film magnet and, therefore, maintain their state without any power supply.
2020-09-21
Adhikary, Manashee, Uppu, Ravitej, Hack, Sjoerd A., Harteveld, Cornelis A. M., Vos, Willem L..  2019.  Optical Resonances in a 3D Superlattice of Photonic Band Gap Cavities. 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.
The confinement of light in three dimensions (3D) is an active research topic in Nanophotonics, since it allows for ultimate control over photons [1]. A powerful tool to this end is a 3D photonic band gap crystal with a tailored defect that acts as a cavity or even a waveguide [2]. When a one-dimensional array of cavities is coupled, an intricate waveguiding system appears, known as a CROW (coupled resonator optical waveguide) [3]. Remarkably, 3D superlattices of coupled cavities that resonate inside a 3D band gap have not been studied to date. Recently, theoretical work has predicted the occurrence of "Cartesian light", wherein light propagates by hopping only in high symmetry directions in space [4]. This represents the optical analog of the Anderson model for spins or electrons that is relevant for neuromorphic computing and may lead to intricate lasing [5].
2020-01-13
Jiang, Tianyu, Ju, Zhenyi, Liu, Houfang, Yang, Fan, Tian, He, Fu, Jun, Ren, Tian-Ling.  2019.  High sensitive surface-acoustic-wave optical sensor based on two-dimensional perovskite. 2019 International Conference on IC Design and Technology (ICICDT). :1–4.
Surface acoustic wave (SAW) optical sensor based on two-dimensional (2D) sensing layer can always provide extremely high sensitivity. As an attractive option, the application of exfoliated 2D perovskite on acousto-optic coupling optical sensor is investigated. In this work, exfoliated 2D (PEA)2PbI4 sheet was transferred as a sensing layer onto the delay area of a dual-port SAW resonator with resonant frequency 497 MHz. From the response under 532 nm laser with intensity of 0.9 mW/cm2, a largest frequency shift of 13.92 MHz was observed. The ultrahigh sensitivity up to 31.6 ppm/(μW/cm2) was calculated by experiment results. We also carried out theoretical analysis and finite element simulation of 3D model to demonstrate the mechanism and validity for optical sensing. The fabricated optical sensor expressed great potential for a variety of optical applications.
2018-08-23
Bader, S., Gerlach, P., Michalzik, R..  2017.  Optically controlled current confinement in parallel-driven VCSELs. 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.

We have presented a unique PT-VCSEL arrangement which experimentally demonstrates the process of optically controlled current confinement. Lessons learned will be transferred to future generations of solitary device which will be optimized with respect to the degree of confinement (depending on the parameters of the PT, in particular the current gain), threshold current and electro-optic efficiency.