Visible to the public Biblio

Filters: Keyword is graph processing  [Clear All Filters]
2021-01-25
Mao, J., Li, X., Lin, Q., Guan, Z..  2020.  Deeply understanding graph-based Sybil detection techniques via empirical analysis on graph processing. China Communications. 17:82–96.
Sybil attacks are one of the most prominent security problems of trust mechanisms in a distributed network with a large number of highly dynamic and heterogeneous devices, which expose serious threat to edge computing based distributed systems. Graphbased Sybil detection approaches extract social structures from target distributed systems, refine the graph via preprocessing methods and capture Sybil nodes based on the specific properties of the refined graph structure. Graph preprocessing is a critical component in such Sybil detection methods, and intuitively, the processing methods will affect the detection performance. Thoroughly understanding the dependency on the graph-processing methods is very important to develop and deploy Sybil detection approaches. In this paper, we design experiments and conduct systematic analysis on graph-based Sybil detection with respect to different graph preprocessing methods on selected network environments. The experiment results disclose the sensitivity caused by different graph transformations on accuracy and robustness of Sybil detection methods.
2018-08-23
Vora, Keval, Tian, Chen, Gupta, Rajiv, Hu, Ziang.  2017.  CoRAL: Confined Recovery in Distributed Asynchronous Graph Processing. Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems. :223–236.
Existing distributed asynchronous graph processing systems employ checkpointing to capture globally consistent snapshots and rollback all machines to most recent checkpoint to recover from machine failures. In this paper we argue that recovery in distributed asynchronous graph processing does not require the entire execution state to be rolled back to a globally consistent state due to the relaxed asynchronous execution semantics. We define the properties required in the recovered state for it to be usable for correct asynchronous processing and develop CoRAL, a lightweight checkpointing and recovery algorithm. First, this algorithm carries out confined recovery that only rolls back graph execution states of the failed machines to affect recovery. Second, it relies upon lightweight checkpoints that capture locally consistent snapshots with a reduced peak network bandwidth requirement. Our experiments using real-world graphs show that our technique recovers from failures and finishes processing 1.5x to 3.2x faster compared to the traditional asynchronous checkpointing and recovery mechanism when failures impact 1 to 6 machines of a 16 machine cluster. Moreover, capturing locally consistent snapshots significantly reduces intermittent high peak bandwidth usage required to save the snapshots – the average reduction in 99th percentile bandwidth ranges from 22% to 51% while 1 to 6 snapshot replicas are being maintained.