Visible to the public Biblio

Filters: Keyword is HITS  [Clear All Filters]
2020-10-12
MacMahon, Silvana Togneri, Alfano, Marco, Lenzitti, Biagio, Bosco, Giosuè Lo, McCaffery, Fergal, Taibi, Davide, Helfert, Markus.  2019.  Improving Communication in Risk Management of Health Information Technology Systems by means of Medical Text Simplification. 2019 IEEE Symposium on Computers and Communications (ISCC). :1135–1140.
Health Information Technology Systems (HITS) are increasingly used to improve the quality of patient care while reducing costs. These systems have been developed in response to the changing models of care to an ongoing relationship between patient and care team, supported by the use of technology due to the increased instance of chronic disease. However, the use of HITS may increase the risk to patient safety and security. While standards can be used to address and manage these risks, significant communication problems exist between experts working in different departments. These departments operate in silos often leading to communication breakdowns. For example, risk management stakeholders who are not clinicians may struggle to understand, define and manage risks associated with these systems when talking to medical professionals as they do not understand medical terminology or the associated care processes. In order to overcome this communication problem, we propose the use of the “Three Amigos” approach together with the use of the SIMPLE tool that has been developed to assist patients in understanding medical terms. This paper examines how the “Three Amigos” approach and the SIMPLE tool can be used to improve estimation of severity of risk by non-clinical risk management stakeholders and provides a practical example of their use in a ten step risk management process.
2018-09-05
Li, C., Palanisamy, B., Joshi, J..  2017.  Differentially Private Trajectory Analysis for Points-of-Interest Recommendation. 2017 IEEE International Congress on Big Data (BigData Congress). :49–56.

Ubiquitous deployment of low-cost mobile positioning devices and the widespread use of high-speed wireless networks enable massive collection of large-scale trajectory data of individuals moving on road networks. Trajectory data mining finds numerous applications including understanding users' historical travel preferences and recommending places of interest to new visitors. Privacy-preserving trajectory mining is an important and challenging problem as exposure of sensitive location information in the trajectories can directly invade the location privacy of the users associated with the trajectories. In this paper, we propose a differentially private trajectory analysis algorithm for points-of-interest recommendation to users that aims at maximizing the accuracy of the recommendation results while protecting the privacy of the exposed trajectories with differential privacy guarantees. Our algorithm first transforms the raw trajectory dataset into a bipartite graph with nodes representing the users and the points-of-interest and the edges representing the visits made by the users to the locations, and then extracts the association matrix representing the bipartite graph to inject carefully calibrated noise to meet έ-differential privacy guarantees. A post-processing of the perturbed association matrix is performed to suppress noise prior to performing a Hyperlink-Induced Topic Search (HITS) on the transformed data that generates an ordered list of recommended points-of-interest. Extensive experiments on a real trajectory dataset show that our algorithm is efficient, scalable and demonstrates high recommendation accuracy while meeting the required differential privacy guarantees.