Visible to the public Biblio

Filters: Keyword is data privacy protection  [Clear All Filters]
2023-01-20
Liu, Dong, Zhu, Yingwei, Du, Haoliang, Ruan, Lixiang.  2022.  Multi-level security defense method of smart substation based on data aggregation and convolution neural network. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1987–1991.
Aiming at the prevention of information security risk in protection and control of smart substation, a multi-level security defense method of substation based on data aggregation and convolution neural network (CNN) is proposed. Firstly, the intelligent electronic device(IED) uses "digital certificate + digital signature" for the first level of identity authentication, and uses UKey identification code for the second level of physical identity authentication; Secondly, the device group of the monitoring layer judges whether the data report is tampered during transmission according to the registration stage and its own ID information, and the device group aggregates the data using the credential information; Finally, the convolution decomposition technology and depth separable technology are combined, and the time factor is introduced to control the degree of data fusion and the number of input channels of the network, so that the network model can learn the original data and fused data at the same time. Simulation results show that the proposed method can effectively save communication overhead, ensure the reliable transmission of messages under normal and abnormal operation, and effectively improve the security defense ability of smart substation.
2022-03-22
Zhang, Tengyue, Chen, Liang, Han, Wen, Lin, Haojie, Xu, Aidong, Zhou, Zhiyu, Chen, Zhiwei, Jiang, Yixin, Zhang, Yunan.  2021.  Security Protection Technology of Electrical Power System Based on Edge Computing. 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). :254—258.
In this paper, we mainly introduce the security protection technology of smart grid based on edge computing and propose an edge computing security protection architecture based on multi-service flexible mechanism. Aiming at the real time requirements of heterogeneous energy terminal access and power edge computing business in multiple interactive environment, a real-time and strong compatibility terminal security access mechanism integrating physical characteristics and lightweight cryptographic mechanism is proposed. According to different power terminal security data requirements, the edge computing data transmission, processing security and privacy protection technology are proposed. In addition, in the power system of distribution, microgrid and advanced metering system, the application of edge computing has been well reflected. Combined with encryption technology, access authentication, the security defense of edge data, edge equipment and edge application is carried out in many aspects, which strengthens the security and reliability of business penetration and information sharing at the edge of power grid, and realizes the end-to-end and end-to-system security prevention and control of power grid edge computing.
2021-01-11
Johnson, N., Near, J. P., Hellerstein, J. M., Song, D..  2020.  Chorus: a Programming Framework for Building Scalable Differential Privacy Mechanisms. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :535–551.
Differential privacy is fast becoming the gold standard in enabling statistical analysis of data while protecting the privacy of individuals. However, practical use of differential privacy still lags behind research progress because research prototypes cannot satisfy the scalability requirements of production deployments. To address this challenge, we present Chorus, a framework for building scalable differential privacy mechanisms which is based on cooperation between the mechanism itself and a high-performance production database management system (DBMS). We demonstrate the use of Chorus to build the first highly scalable implementations of complex mechanisms like Weighted PINQ, MWEM, and the matrix mechanism. We report on our experience deploying Chorus at Uber, and evaluate its scalability on real-world queries.
2020-01-20
Jasim, Anwar Chitheer, Hassoon, Imad Ali, Tapus, Nicolae.  2019.  Cloud: privacy For Locations Based-services' through Access Control with dynamic multi-level policy. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :1911–1916.

LBSs are Location-Based Services that provide certain service based on the current or past user's location. During the past decade, LBSs have become more popular as a result of the widespread use of mobile devices with position functions. Location information is a secondary information that can provide personal insight about one's life. This issue associated with sharing of data in cloud-based locations. For example, a hospital is a public space and the actual location of the hospital does not carry any sensitive information. However, it may become sensitive if the specialty of the hospital is analyzed. In this paper we proposed design presents a combination of methods for providing data privacy protection for location-based services (LBSs) with the use of cloud service. The work built in zero trust and we start to manage the access to the system through different levels. The proposal is based on a model that stores user location data in supplementary servers and not in non-trustable third-party applications. The approach of the present research is to analyze the privacy protection possibilities through data partitioning. The data collected from the different recourses are distributed into different servers according to the partitioning model based on multi-level policy. Access is granted to third party applications only to designated servers and the privacy of the user profile is also ensured in each server, as they are not trustable.

2018-09-05
Jia, R., Dong, R., Ganesh, P., Sastry, S., Spanos, C..  2017.  Towards a theory of free-lunch privacy in cyber-physical systems. 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :902–910.

Emerging cyber-physical systems (CPS) often require collecting end users' data to support data-informed decision making processes. There has been a long-standing argument as to the tradeoff between privacy and data utility. In this paper, we adopt a multiparametric programming approach to rigorously study conditions under which data utility has to be sacrificed to protect privacy and situations where free-lunch privacy can be achieved, i.e., data can be concealed without hurting the optimality of the decision making underlying the CPS. We formalize the concept of free-lunch privacy, and establish various results on its existence, geometry, as well as efficient computation methods. We propose the free-lunch privacy mechanism, which is a pragmatic mechanism that exploits free-lunch privacy if it exists with the constant guarantee of optimal usage of data. We study the resilience of this mechanism against attacks that attempt to infer the parameter of a user's data generating process. We close the paper by a case study on occupancy-adaptive smart home temperature control to demonstrate the efficacy of the mechanism.