Visible to the public Biblio

Filters: Keyword is System-of-Systems  [Clear All Filters]
2021-04-27
Aigner, A., Khelil, A..  2020.  A Benchmark of Security Metrics in Cyber-Physical Systems. 2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops). :1—6.

The usage of connected devices and their role within our daily- and business life gains more and more impact. In addition, various derivations of Cyber-Physical Systems (CPS) reach new business fields, like smart healthcare or Industry 4.0. Although these systems do bring many advantages for users by extending the overall functionality of existing systems, they come with several challenges, especially for system engineers and architects. One key challenge consists in achieving a sufficiently high level of security within the CPS environment, as sensitive data or safety-critical functions are often integral parts of CPS. Being system of systems (SoS), CPS complexity, unpredictability and heterogeneity complicate analyzing the overall level of security, as well as providing a way to detect ongoing attacks. Usually, security metrics and frameworks provide an effective tool to measure the level of security of a given component or system. Although several comprehensive surveys exist, an assessment of the effectiveness of the existing solutions for CPS environments is insufficiently investigated in literature. In this work, we address this gap by benchmarking a carefully selected variety of existing security metrics in terms of their usability for CPS. Accordingly, we pinpoint critical CPS challenges and qualitatively assess the effectiveness of the existing metrics for CPS systems.

2021-03-29
Aigner, A., Khelil, A..  2020.  An Effective Semantic Security Metric for Industrial Cyber-Physical Systems. 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). 1:87—92.

The emergence of Industrial Cyber-Physical Systems (ICPS) in today's business world is still steadily progressing to new dimensions. Although they bring many new advantages to business processes and enable automation and a wider range of service capability, they also propose a variety of new challenges. One major challenge, which is introduced by such System-of-Systems (SoS), lies in the security aspect. As security may not have had that significant role in traditional embedded system engineering, a generic way to measure the level of security within an ICPS would provide a significant benefit for system engineers and involved stakeholders. Even though many security metrics and frameworks exist, most of them insufficiently consider an SoS context and the challenges of such environments. Therefore, we aim to define a security metric for ICPS, which measures the level of security during the system design, tests, and integration as well as at runtime. For this, we try to focus on a semantic point of view, which on one hand has not been considered in security metric definitions yet, and on the other hand allows us to handle the complexity of SoS architectures. Furthermore, our approach allows combining the critical characteristics of an ICPS, like uncertainty, required reliability, multi-criticality and safety aspects.

2018-09-05
Turnley, J., Wachtel, A., Muñoz-Ramos, K., Hoffman, M., Gauthier, J., Speed, A., Kittinger, R..  2017.  Modeling human-technology interaction as a sociotechnical system of systems. 2017 12th System of Systems Engineering Conference (SoSE). :1–6.
As system of systems (SoS) models become increasingly complex and interconnected a new approach is needed to capture the effects of humans within the SoS. Many real-life events have shown the detrimental outcomes of failing to account for humans in the loop. This research introduces a novel and cross-disciplinary methodology for modeling humans interacting with technologies to perform tasks within an SoS specifically within a layered physical security system use case. Metrics and formulations developed for this new way of looking at SoS termed sociotechnical SoS allow for the quantification of the interplay of effectiveness and efficiency seen in detection theory to measure the ability of a physical security system to detect and respond to threats. This methodology has been applied to a notional representation of a small military Forward Operating Base (FOB) as a proof-of-concept.