Visible to the public Biblio

Filters: Keyword is energy supply  [Clear All Filters]
2020-09-28
Patsonakis, Christos, Terzi, Sofia, Moschos, Ioannis, Ioannidis, Dimosthenis, Votis, Konstantinos, Tzovaras, Dimitrios.  2019.  Permissioned Blockchains and Virtual Nodes for Reinforcing Trust Between Aggregators and Prosumers in Energy Demand Response Scenarios. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
The advancement and penetration of distributed energy resources (DERs) and renewable energy sources (RES) are transforming legacy energy systems in an attempt to reduce carbon emissions and energy waste. Demand Response (DR) has been identified as a key enabler of integrating these, and other, Smart Grid technologies, while, simultaneously, ensuring grid stability and secure energy supply. The massive deployment of smart meters, IoT devices and DERs dictate the need to move to decentralized, or even localized, DR schemes in the face of the increased scale and complexity of monitoring and coordinating the actors and devices in modern smart grids. Furthermore, there is an inherent need to guarantee interoperability, due to the vast number of, e.g., hardware and software stakeholders, and, more importantly, promote trust and incentivize the participation of customers in DR schemes, if they are to be successfully deployed.In this work, we illustrate the design of an energy system that addresses all of the roadblocks that hinder the large scale deployment of DR services. Our DR framework incorporates modern Smart Grid technologies, such as fog-enabled and IoT devices, DERs and RES to, among others, automate asset handling and various time-consuming workflows. To guarantee interoperability, our system employs OpenADR, which standardizes the communication of DR signals among energy stakeholders. Our approach acknowledges the need for decentralization and employs blockchains and smart contracts to deliver a secure, privacy-preserving, tamper-resistant, auditable and reliable DR framework. Blockchains provide the infrastructure to design innovative DR schemes and incentivize active consumer participation as their aforementioned properties promote transparency and trust. In addition, we harness the power of smart contracts which allows us to design and implement fully automated contractual agreements both among involved stakeholders, as well as on a machine-to-machine basis. Smart contracts are digital agents that "live" in the blockchain and can encode, execute and enforce arbitrary agreements. To illustrate the potential and effectiveness of our smart contract-based DR framework, we present a case study that describes the exchange of DR signals and the autonomous instantiation of smart contracts among involved participants to mediate and monitor transactions, enforce contractual clauses, regulate energy supply and handle payments/penalties.
2018-02-21
Muñoz, C., Wang, L., Solana, E., Crowcroft, J..  2017.  I(FIB)F: Iterated bloom filters for routing in named data networks. 2017 International Conference on Networked Systems (NetSys). :1–8.

Named Data Networks provide a clean-slate redesign of the Future Internet for efficient content distribution. Because Internet of Things are expected to compose a significant part of Future Internet, most content will be managed by constrained devices. Such devices are often equipped with limited CPU, memory, bandwidth, and energy supply. However, the current Named Data Networks design neglects the specific requirements of Internet of Things scenarios and many data structures need to be further optimized. The purpose of this research is to provide an efficient strategy to route in Named Data Networks by constructing a Forwarding Information Base using Iterated Bloom Filters defined as I(FIB)F. We propose the use of content names based on iterative hashes. This strategy leads to reduce the overhead of packets. Moreover, the memory and the complexity required in the forwarding strategy are lower than in current solutions. We compare our proposal with solutions based on hierarchical names and Standard Bloom Filters. We show how to further optimize I(FIB)F by exploiting the structure information contained in hierarchical content names. Finally, two strategies may be followed to reduce: (i) the overall memory for routing or (ii) the probability of false positives.

2017-07-24
Karasevich, Aleksandr M., Tutnov, Igor A., Baryshev, Gennady K..  2016.  The Prospects of Application of Information Technologies and the Principles of Intelligent Automated Systems to Manage the Security Status of Objects of Energy Supply of Smart Cities. Proceedings of the International Conference on Electronic Governance and Open Society: Challenges in Eurasia. :9–14.

The paper focuses on one of the methods of designing a highly-automated hardware-software complex aimed at controlling the security of power grids and units that support both central heating and power systems of smart cities. We understand this condition as a situation when any energy consumers of smart cities will be provided with necessary for their living amounts of energy and fuel at any time, including possible periods of techno genic and natural hazards. Two main scientific principles lie in the base of the approach introduced. The first one is diversification of risks of energy security of smart cities by rational choosing the different energy generation sources ratio for fuel-energy balance of a smart city, including large fuel electric power plants and small power autonomous generators. For example, they can be wind energy machinery of sun collectors, heat pipes, etc. The second principle is energy efficiency and energy saving of smart cities. In our case this principle is realized by the high level of automation of monitoring and operation of security status of energy systems and complexes that provide the consumers of smart cities with heat, hot water and electricity, as well as by preventive alert of possible emergencies and high reliability of functioning of all energy facilities. We formulate the main principle governing the construction of a smart hardware-software complex used to maintain a highly-automated control over risks connected with functioning of both power sources and transmission grids. This principle is for open block architecture, including highly autonomous block-modules of primary registration of measuring information, data analysis and systems of automated operation. It also describes general IT-tools used to control the risks of supplying smart cities with energy and shows the structure of a highly-automated system designed to select technological and managerial solutions for a smart city's energy supply system.

2017-02-27
Li, Z., Oechtering, T. J..  2015.  Privacy on hypothesis testing in smart grids. 2015 IEEE Information Theory Workshop - Fall (ITW). :337–341.

In this paper, we study the problem of privacy information leakage in a smart grid. The privacy risk is assumed to be caused by an unauthorized binary hypothesis testing of the consumer's behaviour based on the smart meter readings of energy supplies from the energy provider. Another energy supplies are produced by an alternative energy source. A controller equipped with an energy storage device manages the energy inflows to satisfy the energy demand of the consumer. We study the optimal energy control strategy which minimizes the asymptotic exponential decay rate of the minimum Type II error probability in the unauthorized hypothesis testing to suppress the privacy risk. Our study shows that the cardinality of the energy supplies from the energy provider for the optimal control strategy is no more than two. This result implies a simple objective of the optimal energy control strategy. When additional side information is available for the adversary, the optimal control strategy and privacy risk are compared with the case of leaking smart meter readings to the adversary only.

2015-05-01
Hong Liu, Huansheng Ning, Yan Zhang, Qingxu Xiong, Yang, L.T..  2014.  Role-Dependent Privacy Preservation for Secure V2G Networks in the Smart Grid. Information Forensics and Security, IEEE Transactions on. 9:208-220.

Vehicle-to-grid (V2G), involving both charging and discharging of battery vehicles (BVs), enhances the smart grid substantially to alleviate peaks in power consumption. In a V2G scenario, the communications between BVs and power grid may confront severe cyber security vulnerabilities. Traditionally, authentication mechanisms are solely designed for the BVs when they charge electricity as energy customers. In this paper, we first show that, when a BV interacts with the power grid, it may act in one of three roles: 1) energy demand (i.e., a customer); 2) energy storage; and 3) energy supply (i.e., a generator). In each role, we further demonstrate that the BV has dissimilar security and privacy concerns. Hence, the traditional approach that only considers BVs as energy customers is not universally applicable for the interactions in the smart grid. To address this new security challenge, we propose a role-dependent privacy preservation scheme (ROPS) to achieve secure interactions between a BV and power grid. In the ROPS, a set of interlinked subprotocols is proposed to incorporate different privacy considerations when a BV acts as a customer, storage, or a generator. We also outline both centralized and distributed discharging operations when a BV feeds energy back into the grid. Finally, security analysis is performed to indicate that the proposed ROPS owns required security and privacy properties and can be a highly potential security solution for V2G networks in the smart grid. The identified security challenge as well as the proposed ROPS scheme indicates that role-awareness is crucial for secure V2G networks.